Skip to main content

Table 3 Amebiasis prediction results ± their standard deviation along the five runs of the fivefold cross-validation

From: Decision tree-based learning and laboratory data mining: an efficient approach to amebiasis testing

 

Accuracy

Precision

Recall

F1 score

LR

0.8911 (± 0.0159)

0.8760 (± 0.0189)

0.8555 (± 0.0198)

0.8642 (± 0.0179)

SGD

0.7626 (± 0.1132)

0.7851 (± 0.0492)

0.7691 (± 0.0710)

0.7298 (± 0.0992)

SVM

0.7067 (± 0.0283)

0.3537 (± 0.0148)

0.4994 (± 0.0012)

0.4139 (± 0.0097)

LSVM

0.8641 (± 0.0452)

0.8413 (± 0.0438)

0.8658 (± 0.0256)

0.8454 (± 0.0411)

KNN

0.7905 (± 0.0337)

0.7465 (± 0.0578)

0.7319 (± 0.0471)

0.7378 (± 0.0514)

HKNN

0.8920 (± 0.0191)

0.8682 (± 0.0311)

0.8671 (± 0.0297)

0.8674 (± 0.0299)

DT

0.936 (± 0.0179)

0.937 (± 0.0250)

0.936 (± 0.0271)

0.936 (± 0.0257)

RF

0.9460 (± 0.0135)

0.9330 (± 0.0171)

0.9349 (± 0.0215)

0.9337 (± 0.0189)

AdaBoost

0.9255 (± 0.0143)

0.9120 (± 0.0128)

0.9055 (± 0.0251)

0.9082 (± 0.0194)

GB

0.9450 (± 0.0127)

0.9323 (± 0.0174)

0.9334 (± 0.0199)

0.9326 (± 0.0178)

NB

0.7374 (± 0.0300)

0.7040 (± 0.0200)

0.5882 (± 0.0214)

0.5833 (± 0.0375)

MLP

0.8938 (± 0.0188)

0.8860 (± 0.0211)

0.8478 (± 0.0436)

0.8623 (± 0.0338)

LDA

0.8715 (± 0.0139)

0.8476 (± 0.0149)

0.8375 (± 0.0098)

0.8420 (± 0.0112)

XGBoost

0.9385 (± 0.0116)

0.9289 (± 0.0130)

0.9196 (± 0.0227)

0.9237 (± 0.0173)