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Abstract
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most 
important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due 
to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the 
last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus 
(RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not 
known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in 
travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the 
hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the 
mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis 
virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the 
most likely mode that these viruses could expand their respective geographical range. All these viruses have a different 
epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or 
rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the 
requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is 
given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts.

Background
During the last decades the appearance of new infectious
diseases and an increasing invasion of diseases into new
areas created a new category of pathogens: emerging and
re-emerging pathogens. Most of the emerging viruses are
zoonotic which means they can infect both animals and
humans [1]. As outlined in detail in the examples pro-
vided below, humans are dead-end hosts in most cases.
Hence, in the case of emerging viruses, zoonotic is mainly
defined as transmission of viruses from animals to
humans rather than vice versa [2]. Among emerging
viruses, arboviruses play a major role. Arboviruses are
defined as viruses that survive in nature by transmission
from infected to susceptible hosts (vertebrates) by certain
species of arthropods (mosquitoes, ticks, sandflies,
midges etc.). The viruses multiply within the tissues of

the arthropod to produce high titres of virus in the sali-
vary glands and are then passed on to vertebrates
(humans and animals) by the bites of the arthropods [3].

To establish and maintain an arbovirus transmission
cycle three factors are essential: the arbovirus, the arthro-
pod, and the vertebrate. Usually, these three components
have a rather complex relationship including factors such
as the vector competence for the particular virus and the
susceptibility of the vertebrate host for the virus (produc-
ing a high-level viremia to allow other vectors to become
infected). As prerequisite for continuous circulation of
the virus between arthropod vector and vertebrate host,
all factors must be available in sufficient numbers, at the
same time and at the same place. Scientifically speaking, a
formula describing the vector capacity has to yield high
positive values to lead to reproduction rates above 1 for
the particular arbovirus [4-7]. Taking all this together, the
chance for such a scenario, i.e. the establishment of a new
endemic transmission cycle, are very low in general and
reports about a new "intruder" are rare. However, the
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recent introduction of e.g. West Nile virus into the Amer-
icas, Chikungunya virus into Italy or Usutu virus into
Austria are examples of the vulnerability of our modern
societies for arboviruses [3,8,9]. Sometimes the ways of
introduction of arboviruses are obvious as in the case of
Chikungunya virus in Italy, which was introduced by a
viremic traveller returning from India. In other cases they
remain obscure like the introduction of West Nile virus
into the Americas [10]. Principally, two mechanisms of
importation have to be discussed, the import by viremic
vertebrates (humans, animals) and import by virus-bear-
ing arthropods. While the introduction of new arthropod
species, mainly mosquito species (e.g. Aedes albopictus,
Aedes japonicus), is well-known and, in several countries,
is under close observation, the risk and the importance of
animal trade for the importation of arboviruses has not
been studied extensively [11]. Vertebrate hosts, including
humans, may play a role as vehicles for importation and
the maintenance by amplifying various arboviruses.

Animals may be introduced into new areas intention-
ally or by their natural migration activities. The latter nat-
urally varies tremendously depending on the annual
migration patterns of the particular species. In Germany,
for example, 1322 neozoon species have been registered
since 1492, with 262 species that have established perma-
nent and robust population numbers [12]. Regarding the
establishment of a new arbovirus transmission cycle,
these species may be suitable hosts to permit continuous
viral transmission. Although not an arbovirus, the intro-
duction of monkeypox virus into North America in 2003
via a Gambian giant rat from Africa is yet another exam-
ple for animal trade contributing to the global spread of
zoonotic diseases [13]. So far, the trade of animals has
been rarely incriminated as means of importation of
arboviruses. However, animals are traded for different
reasons across the entire world, for food and food pro-
duction, for scientific, educational and conservation rea-
sons or as companion or, as in the case of the Gambian
giant rats, pet animals, and also for touristic reasons
[2,11,14]. The magnitude of global movement of animals
is immense. From 2000 to 2004, more than a billion ani-
mals from 163 countries were legally imported into the
United States of America [15]. This equals almost 600000
animals per day, but disease screening for arboviruses is
mandatory only in limited cases. Likewise, hematopha-
gous ectoparasites on imported animals which may act as
vectors or which are already infected are likely to go
unnoticed. Other data emphasise the potential of animal
movement in the context of exotic pathogens. For the
year 2002 it was estimated that 49 million amphibians
and 1.9 million reptiles have been imported into the USA
[16], providing a fair chance to import pathogens due to a
lack of clinical symptoms in these animals [for review see
[17]]. Introduction of animals by chance may play a major

role in the introduction of arthropods. Several examples
are prominent like the introduction of Aedes albopictus
into the United States of America by used tyres or by
bamboo plants into the Netherlands [8,18].

The last International Catalogue of Arboviruses listed
more than 500 arboviruses and related viruses [[10];
http://www2.ncid.cdc.gov/arbocat/index.asp]. More than
150 of these are known to cause human and/or animal
diseases. For many of those viruses, only limited informa-
tion is available regarding their vector and host spectrum.
Hence, we have chosen some prominent examples of
important arboviruses causing human and animal dis-
eases, which belong to the genera alphaviruses (family
Togaviridae), flaviviruses (family Flaviviridae), and phle-
boviruses (family Bunyaviridae) to discuss the animal
aspect in virus dispersal.

Western Equine Encephalomyelitis virus
Western Equine Encephalomyelitis (WEE) is caused by
the Western equine encephalomyelitis virus (WEEV)
which belongs to the genus Alphavirus in the family
Togaviridae [19]. The virus occurs through most of the
American continent, with virological and/or serological
evidence of occurrence in the western parts of Canada,
the U.S.A., in Mexico and throughout parts of Southern
America (Guyana, Ecuador, Brazil, Uruguay and Argen-
tina) [20,21]. WEEV is maintained in North America in a
natural transmission cycle involving domestic and wild
birds as the most important maintenance and amplifying
vertebrate hosts and mosquito vectors, primarily Culex
tarsalis [[21], Figure 1]. However, WEEV was isolated or
detected in at least 14 mosquito species of the genus
Aedes and six species of the genus Culex [22]. In South
America, an additional mosquito-rodent cycle is postu-
lated, involving mosquitoes of the genus Aedes and verte-
brate hosts including rice rats (Oryzomys spp.), rabbits
and introduced European hares (Lepus europaeus) [23-
26]. Humans and horses do not develop viremias high
enough to infect blood-sucking mosquitoes [19]. There-
fore, they may not serve as maintenance or amplifying
hosts and will not be able to sustain a transmission cycle
in nature.

In humans, WEEV causes severe encephalitis with
higher manifestation rates in children and in elderly per-
sons. Fatality rates may be up to 5% [21]. WEEV is an
important pathogen of horses where it causes a severe
form of encephalomyelitis which may be fatal in up to 10
to 50% [21]. WEEV has constantly been declining in
North America over the last decades and no veterinary
nor human cases have been reported in 2009, with only
one submitted mosquito pool testing positive for WEEV
(http://diseasemaps.usgs.gov/; as of December 8th 2009).
Less land irritation and consequently less breading
opportunities for vector mosquito species have been
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claimed for the fading of the virus. To some extent the use
of vaccines, which are available for equines but not for
humans, might have attributed to this situation. Never-
theless, WEEV has been used to develop chimeric vac-
cines in combination with other alphaviruses such as
Sindbis or eastern equine encephalitis viruses [[27]; see
below].

WEEV may be introduced to Europe or to other parts
outside the Americas by different routes. Infected adult
mosquitoes or infected Aedes eggs (Aedes dorsalis) may
be possible means of importation [22]. WEEV may also
be introduced into Europe by viremic birds or by viremic
rodents. As there are no major bird migration routes
between the American and European continents, a natu-
ral introduction via infected birds seems unlikely. How-
ever, some long distance migrating bird species may share
breeding grounds in the arctic with a slight chance of
exchanging arboviruses, providing suitable vector mos-
quito species are present. Sick humans or horses do not
develop viremias high enough to infect mosquitoes and
thus cannot serve for the establishment of a new trans-
mission cycle. Although studies on the vector compe-

tence of European mosquito species for the transmission
of WEEV are missing, WEEV could be isolated from
Culex pipiens and from Aedes vexans. Both mosquito
species form a major part of the Central European mos-
quito fauna. For a natural transmission cycle, WEEV is
dependent on passerine birds and possibly also on small
wild mammals. Both groups of animals are abundant in
Europe and although no data are available on the poten-
tial of European species to serve as natural maintenance
or amplifying hosts, there are no obvious reasons to argue
against a potential for transmission in European species.
Hence, the risk of the introduction of WEEV into Europe
seems to be low, although the required components for a
natural transmission cycle of WEEV seem to be available
(Table 1).

Eastern Equine Encephalomyelitis Virus
Eastern equine encephalomyelitis (EEE) is caused by east-
ern equine encephalomyelitis virus (EEEV) which is also a
member of the genus Alphavirus in the family Togaviri-
dae. EEEV causes severe disease in humans, in horses and
in some game animals [28]. In humans, fatality rates of up

Figure 1 Schematic drawing of the endemic and epidemic transmission cycles of eastern (EEEV), western (WEEV), and Venezuelan equine 
encephalitis viruses (VEEV).
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to 70% may be observed during some epidemics [29]. In
horses, fatality rates of EEV infection may approach up to
near 100% [19]. EEEV infections cause neurological dis-
ease in introduced bird species, like the sparrow, the ring-
necked pheasant, the domestic pigeon and emus [30].
Emus and pheasants seem to serve as amplifying verte-
brate hosts and epizootics in these animal stocks are
observed with high fatality rates and enormous economic
losses [31]. Besides birds, EEEV could be isolated from
bats; however no transmission was detected in bats. Fur-
thermore EEEV was isolated or infection was serologi-
cally proven in amphibians and reptiles. They can yield
high viremias for several months and therefore are candi-

dates for overwintering of EEEV virus in temperate cli-
mates [29,32]. An effective vaccine for use in equines is
commercially available, but there is no approved EEEV
vaccine for humans to date.

EEEV occurs in North and South America. While the
natural transmission cycle(s) in South America are not
well understood, transmission in Eastern North America
is mainly dependent on ornithophilic mosquitoes of the
species Culiseta melanura and passerine and wading
birds of different species (Figure 1). The cycle is mainly
maintained in coastal and inland swamps. Human and
equine cases occur if large populations of mosquitoes of
other species are abundant after heavy rains. These mos-

Table 1: Qualitative estimation of the impact of zoonotic arboviral diseases with a non-zero likelihood of evolving in 
response to animal trade, animal migration and climate change.

Arbovirus Chances for 
dispersal

Major mode of 
dispersal

Chances for 
establishing 
new endemic 
foci (c)

Chances to be 
eliminated 
again (d)

Impact 
on public 
health (e)

Impact on 
veterinary 
public
 health (e)

Occurrence and 
distribution 
influenced by 
climate (f)

WEEV Moderate Long distance 
(viremic birds)

Moderate to high Low to 
moderate

Low Low Yes

EEEV Moderate Long distance 
(viremic birds)

Moderate to high Low to 
moderate

Low Low Yes

VEEV Moderate to 
high (a)

Short distance 
(mosquitoes, 
rodents)

Moderate Low to 
moderate

Low Low to 
moderate (a)

Yes

WNV Moderate to 
high

Long distance 
(viremic birds)

Moderate to high Zero to low Moderate to 
high

Low Yes

JEV Moderate Long 
distance(viremic 
birds)

Moderate Low to 
moderate

Moderate to 
high

Low to 
moderate

Yes

RVFV Moderate to 
high

Short to long 
distance 
(livestock 
animals)

Moderate to high Low to 
moderate

Moderate Moderate to 
high

Yes

USUV Moderate to 
high

Long distance 
(viremic birds)

Moderate to high Zero to low Negligible Low Yes

TBEV Low to 
moderate

Short distance 
(ticks, rodents) (b)

Moderate to high Zero to low Low Negligible Yes

POWV Low to 
moderate

Short distance 
(ticks, rodents) (b)

Moderate to high Zero to low Low Negligible Yes

(a) = Depending on the VEEV subtype involved.
(b) = When ticks are attached to birds, the respective viruses can as well be carried over long distances.
(c) = Because the mechanisms allowing a successful establishing of new endemic foci are poorly understood, the estimates provided are 
speculative despite for the viruses where this happened in recent history, e.g. WNV in America. Expansion of the geographic range of tick-borne 
TBEV and POWV mainly occurs on a different scale than with mosquito-borne arboviruses.
(d) = The general rule "the earlier the detection of the alien virus, the better the chance to successfully terminate it" applies for both mosquito- 
and tick-borne viruses, but due to the life cycle of mosquitoes and the availability of efficient larvicides and adulticides, their abundance can be 
better addressed with an integrated pest management and mosquito control program than fighting ticks in a tick habitat.
(e) = TBEV and JEV cause diseases in humans that can be prevented by applying safe and efficient vaccines. There is an inactivated vaccine 
available for the three equine encephalitis viruses and WNV.
(f) = The distribution of all arboviruses depends to a major part of the abundance of suitable vector species. Since their life cycle is strongly 
influenced by the weather, climate is an important issue in the occurrence and spread of arboviruses.
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quito species may serve as bridging vectors, transmitting
the EEEV obtained from viremic birds to horses and
humans due to their more non-catholic feeding behav-
iour [[33], Figure 1]. EEEV was isolated from more than
20 different mosquito species, among them Culex pipiens
and Aedes vexans which also occur in Central Europe and
many other parts of the world (see: http://data.gbif.org/
species/13452448/). The results of studies of transovarial
transmission of EEEV in mosquitoes are conflicting.
Probably EEEV is not transmitted via infection of eggs to
the next mosquito generation while for Coquilletidia per-
turbans transovarial transmission could be proved [34].

The risk of an importation of EEEV into Europe or
other areas outside of the American continent seems to
be low. Basically, an importation seems possible via
infected mosquitoes, infected birds (passerine, waders,
farm birds like emus or pheasants) and also via infected
reptiles and amphibians. As already mentioned for
WEEV, no frequent migration of birds between the
Americas and Europe exists. Therefore an introduction
seems only possible as a result of human activities (e.g.
trade, scientific, conservation, touristic activities).
Although no studies on the vector competence of Euro-
pean mosquito species for EEEV are available, Aedes vex-
ans and Culex pipens are among the most abundant
mosquito species in Europe. However, at least in North
America, Culiseta melanura seems to be the main vector
for EEEV. The genus Culiseta is a rather species poor
genus (five species worldwide), which has been claimed
to be the reason for higher levels of genetic identity in
viruses transmitted by Culiseta mosquitoes than in
viruses that mainly use Culex or Aedes vector species
[35]. In contrast to WEEV, where no clinical symptoms in
birds seem to occur, EEEV seems to cause neurologic dis-
ease and haemorrhagic disease with death in many spe-
cies of non-American wild birds. Therefore, the
introduction and establishment of EEEV in the European
bird populations would probably cause high death rates
in birds and would likely be detected at an early time-
point after introduction (Table 1). As for WEEV, the basic
factors for the establishment of a natural cycle seem to be
available in Europe also for EEEV.

Venezuelan Equine Encephalomyelitis Virus
Venezuelan equine encephalomyelitis is caused by a com-
plex of viruses (Venezuelan equine encephalomyelitis
virus, VEEV) which belongs to the genus Alphavirus in
the family Togaviridae. The complex includes seven dif-
ferent virus species and a number of subtypes and variet-
ies [36]. VEEV occurs mainly in tropical and subtropical
regions of the Americas and circulate endemically
between mosquitoes of the genus Culex (Melanoconion)
and rodents (Oryzomys, Proechimys, Sigmodon, Peromy-
scus, Heteromys, Zygodontomys) [[37], Figure 1]. How-

ever, some species of birds, mainly herons, also develop
high and prolonged viremias and thus can infect blood-
sucking mosquitoes. Therefore these birds may serve as
maintenance and amplifying hosts on particular occa-
sions [37]. Other wild or farm animals do not seem to
replicate VEEV in virus titres high enough to serve as
hosts for maintenance of transmission cycles. Also
humans infected with epidemic VEEV strains develop
high titres and may therefore play a role as maintenance
and amplifying hosts [38,39].

Major VEE epidemics occur sporadically or periodi-
cally when epidemic strains of the subtypes IAB and IC
spill over into competent mosquitoes of the genus Aedes
and Psorophora which have a peridomestic/peri-agricul-
tural behaviour and may transmit VEEV to equines, don-
keys and mules. Equids develop high virus titres and
therefore may serve as amplifying hosts for VEEV. An
equine-mosquito-cycle may induce an extensive virus cir-
culation with a spill-over to humans and cause epidemic
VEE (Figure 1). Epidemic VEE in humans is a highly inca-
pacitating dengue-like illness which in a small part of
infected people, mainly in children, may cause severe
encephalitis with fatality rates of 1 to 3% [40]. There is no
specific treatment available to cure the disease and no
human vaccine to prevent it. A vaccine for equids, how-
ever, can be purchased.

The epidemic occurrence of VEEV during the last two
decades shows that it is highly variable in nature and that
single amino acid changes in the viral genome may cause
major changes in vector competence of mosquitoes or in
the pathogenicity in equids [41-43]. Studies also show
that epidemic strains of VEEV adapt to one of the impor-
tant epidemic bridge-vectors (Ochlerotatus taenio-
rhynchus formerly Aedes taeniorhynchus) and replicate to
higher titres in this mosquito species than in mosquitoes
involved in endemic transmission (Melanoconion) [44].
The introduction and establishment of VEEV into Europe
may be possible via infected mosquitoes, rodents, birds
(herons), horses and humans (Table 1). The establish-
ment of enzootic viruses needs susceptible rodents and
transmitting competent mosquitoes. While in Central
and Southern America, mainly rodents of the subfamily
Sigmodontinae are involved as maintenance hosts, data
on the replication of different VEEV subtypes in Euro-
pean rodents of the subfamilies Murinae and Arvicolinae
are not available. Whether mosquitoes of the genera
Culex and Aedes in Europe are competent for VEEV has
not been studied so far. However, American strains of
Aedes albopictus were found to be capable of transmitting
VEEV [45,46]. Therefore, at least a limited peri-domestic
or urban (human-mosquito-human) transmission cycle
with epidemic VEEV strains seems possible (Table 1).
However, for larger epizootics and epidemics of VEEV,
larger populations of non-immune equids are a pre-req-

http://data.gbif.org/species/13452448/
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uisite for the initiation of the epidemic transmission
cycles.

West Nile Virus
West Nile virus (WNV) is a member of the Japanese
encephalitis group of the genus Flavivirus in the family
Flaviviridae. The evolutionary origin of WNV seems to
be in Central Africa, from where it spread over various
parts of the world and locally new genotypes emerged
[47]. Actually five genetic lineages are recognized, from
which only lineage 1a is distributed worldwide while the
other lineages and sub-lineages exhibit a more local geo-
graphic distribution [48]. WNV causes a febrile illness or
encephalitis in humans and horses [49]. In humans the
fatality rate of WNV CNS infections ranges from 5 to 10%
with higher rates in elderly people or those with addi-
tional underlying diseases [50]. The introduction of
WNV in the Americas caused a high fatality rate in differ-
ent American species of birds (e.g. Corvidae), while fatal-
ities by WNV infections in wild birds in the Old World
have not been reported so far [51]. However in Israel epi-
zootics in geese were repeatedly reported during the last
decades.

Like other members of the Japanese encephalitis sero-
group, WNV in nature is maintained in a bird-mosquito
cycle (Figure 2). WNV was isolated or detected in at least
43 species of old world mosquito species, mainly belong-
ing to the genus Culex [52]. The importance of other
mosquito genera and species (Aedes, Anopheles,
Aedomyia, Mansonia, Coquilletidia) and of hard and soft
ticks (Hyalomma, Dermacentor, Rhipicephalus, Ambly-
omma, Argas, Ornithodoros) for the endemic and epi-
demic transmission cycles remains to be determined [53].
Various birds, mainly passerines serve as primary verte-
brate hosts of WNV [54,55]. WNV infections were also
detected in rodents and other small mammals, however,
these animals do not seem to produce viremias high
enough for maintaining the transmission cycle. Moderate
viremias, however, were detected in horses and in lemurs
in Madagascar [55]. These animals may support the virus
transmission cycle under local ecological conditions. In
one study a frog (Rana ridibunda) was found to be vire-
mic and was able to transmit the virus to blood-sucking
Culex pipiens [56]. Therefore, also a frog-mosquito-frog-
cycle seems to be possible under certain ecological condi-
tions.

WNV is an often cited example of a dispersing arbovi-
rus since it invaded into North America in 1999 [10].
From the original point of invasion (New York) the WNV
dispersed within a few years over the total continental
U.S.A. and Southern parts of Canada and also migrated
into Central America and parts of South America. The
main way of migration is thought to be via migration of
birds. Several bird species (house sparrow, blue jays,

American robins) may have played an important role in
the distribution of WNV in the Americas. Additionally,
there is evidence that different mosquito species were
important in different parts of Northern America for the
transmission of WNV, and that a more efficiently repli-
cating strain evolved in 2003 entirely replacing the origi-
nally introduced WNV strain in North America [57].

The exact way of introduction of WNV into North
America is still unclear. Several additional factors are dis-
cussed which improved the establishment and transmis-
sion of WNV in this new environment (Table 1). Among
them are the introduction and geographic dispersion of
large and WNV non-immune populations of the house
sparrow, which served as a very efficient maintenance
host for WNV, the availability of a very competent vector
(Culex pipiens), climate warming, and perhaps also the
decline of infections with the closely related St. Louis
encephalitis virus, an indigenous virus of the Japanese
encephalitis serogroup in the Americas [9]. However in
Europe, instead of all discussions on the geographic dis-
persion and introduction into new regions, no clear
increase of the range of distribution of WNV can be
observed. Since the early 1970s, when the virus was
detected in Czechoslovakia, no extension of distribution
further northward was detected despite many efforts to
detect WNV in Central and Northern Europe after the

Figure 2 Schematic drawing of the transmission cycles and possi-
ble modes of dispersal of West Nile virus.
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introduction in the Americas, although competent vec-
tors as well as maintenance and amplifying hosts for
WNV seem to exist in Central Europe and repeated
introductions into Central Europe have occurred [58,59].
In a risk assessment of the introduction of WNV into the
Galapagos Islands, four modes of introduction are dis-
cussed: introduction via infected humans, via infected
migratory birds, via infected mosquitoes, and via human-
transported host vertebrates [60]. The introduction via
infected humans could be excluded, as humans do not
develop viremias high enough for infecting mosquitoes.
The analysis showed that the highest risk of an introduc-
tion of WNV is infected mosquitoes un-intentionally
transported in airoplanes carrying tourists. Also the
introduction of WNV via infected eggs or larvae in tyres
seemed to be of importance. Instead, the introduction of
WNV via migratory birds or via infected chickens
seemed to be at least one magnitude lower than due to
airoplane-transported mosquitoes. In the case of opti-
mized conditions the introduction of WNV may most
probably happen due to migratory birds or via carrying of
infected mosquitoes from endemic areas via human
transport activities. Therefore, the migratory bird routes
and the main transport routes from endemic southern
and South-eastern Europe may be most important for
continuous surveillance [48,61,62].

Japanese Encephalitis Virus
Japanese encephalitis virus (JEV) is a member of the sim-
ilarly named serogroup in the genus Flavivirus of the
family Flaviviridae. JEV is transmitted in a natural trans-
mission cycle involving mosquitoes of the genus Culex
and water birds (mainly egrets and herons) [63]. Actually
five lineages of JEV can be distinguished which is of
importance for epidemiological studies [9]. Currently,
JEV is the most important mosquito-transmitted arbovi-
rus, causing encephalitis in the world. An estimated
30,000 to 50,000 human cases occur every year [64]. Up
to 30% of all ill humans die, and about half of the surviv-
ing patients show persisting, life-long neurologic seque-
lae [65]. JEV infects a number of different animals, among
them dogs, ducks, chicken, cattle, bats, snakes and frogs.
Humans and horses may develop a severe and fatal form
of encephalitis. However, the viremia titres in humans
and horses are not high enough to serve as transmission
hosts (Figure 3). In contrast, pigs develop high viremias
and they therefore serve as amplification hosts for bridge
vectors to initiate epizootics and epidemics [66].

The natural transmission cycle mainly involves mosqui-
toes of the genus Culex. The primary vector is Culex tri-
taeniorhynchus, which is associated with rice paddies and
irrigated crop fields in whole Southeast Asia. Culex tri-
taeniorhynchus feeds on water birds and on larger mam-
mals, also on pigs and therefore transmits JEV to this

important amplifying host, and also to equids and to
humans. Other Culex species, like Culex pipens, Culex
vishnui and Culex bitaeniorhynchus may play a local role
for the transmission of JEV (Figure 3). The natural verte-
brate hosts of JEV are ardeid birds, mainly the black-
crowned night heron (Nycticorax nycticorax) and the
Asian cattle egret (Bubulcus ibis coromandus) [67]. There
is evidence that JEV is also transmitted transovarially in
Culex tritaeniorhynchus. Therefore, an enzootic or an
epizootic cycle may be initiated from mosquitoes directly
after diapause. The invasion of JEV in new areas in South-
east Asia during the last decades has been mainly associ-
ated with the increase of human populations and,
consequently, in increasing areas of rice paddies and pig
farming [68]. JEV recently expanded also in higher alti-
tudes in the Kathmandu valley of Nepal and into New
Guinea and to the Torres Straight and to Northern Aus-
tralia [69,70].

Japanese encephalitis virus shows a clear tendency of
expansion. One mechanism of spread involves the air
transport of infected mosquitoes. This method of spread
was shown by the introduction of JEV into Pacific islands
like Guam or Saipan [71,72]. A recent study showed that
the potential risk of an introduction of JEV into the west
coast of the United States is possible. Competent vectors
and pigs as amplifying vertebrate hosts are available in
moderate numbers. However pigs in California do not
live in residential environments as in Asia, but in large pig
farms, which are dispersed throughout the state. There-
fore, the risk of a spread of introduced JEV may be lower
as in the agricultural areas of Asian countries. However,
the feral pig production farms provide sufficient non-

Figure 3 Schematic drawing of transmission cycles and rural as 
well as peri-urban infections of animals and humans with Japa-
nese encephalitis virus.
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immune populations for an amplification and potential
spread of JEV in California. As the viremia in pigs may be
prolonged, also the transport of pigs to new locations/
farms may provide a way of transport for the spread of
JEV for small and moderate distances. Also, a further
introduction into central Asia and even into eastern and
Central Europe seems possible (Table 1). Birds may also
play a critical role of transporting over long distances and
pigs may be responsible for the local distribution of the
virus. JEV is one of the arboviruses with a high potential
of expansion into virgin areas [73].

Rift Valley Fever Virus
Rift Valley fever (RVF) is a disease which was first
described as an entity during an epizootic outbreak in
1930 - 1931 in Kenya [74]. There, the etiologic agent, Rift
Valley fever virus (RVFV) causes severe disease, stillbirth
and often death of cattle, sheep and goats [75]. Only in
the 1950s, first cases of an undifferentiated fever in
humans were associated with infection of RVFV. Apart
from the original outbreak, the pathogenic potential of
RVFV for humans was described in detail during out-
breaks in the 1950s [74]. In 1975, during a large outbreak
of RVF in South-Africa, the first fatal human cases were
described and the virus was reclassified as a hemorrhagic
fever virus [76]. Until 1977, RVFV outbreaks were limited
to Sub-Saharan Africa. In 1977 an epizootic RVF epi-
demic occurred in Egypt, for the first time north of the
Saharan desert. During this epidemic more than 200,000
human cases with 600 fatalities were registered. Besides
hemorrhagic manifestations the virus caused retinitis
with blindness, hepatitis and encephalitis [77,78]. During
the late 1980s a new extension of the geographic range of
RVFV into western Africa was detected. And again in
2000, RVFV caused an epizootic and epidemic in Saudi-
Arabia and Yemen, the first time that RVF was detected
outside of Africa [79,80].

RVFV belongs to the genus Phlebovirus of the family
Bunyaviridae. It is transmitted in an enzootic cycle
among wildlife and mosquitoes [81]. RVF is a promiscu-
ous virus, using a number of different mosquito species
belonging to different genera (Aedes, Ochlerotatus, Stego-
myia, Anopheles, Culex, Neomelaniconion, Eretmapodites
and others) as vectors [[74], Figure 4]. The role of most of
these mosquito species for the maintenance of the enzo-
otic cycle is unclear. Probably the most important way of
maintaining the enzootic cycle is the transovarial trans-
mission in mosquitoes, mainly of the genus Aedes. Aedes
macintoshi seems to play a major role in Eastern Africa
[82]. Aedes macintoshi lays infected eggs into the ground
and these eggs need one or more severe flooding to hatch.
Therefore an inter-epidemic period (low mosquito popu-
lation, low number of cases of RVF) and an epidemic
period (high populations of mosquitoes and high num-

bers of sick animals and of human cases) can be distin-
guished. The occurrence of epidemic periods is clearly
associated with heavy rains which are closely linked to
warming of the Indian Ocean during the El Nino South-
ern Oscillations (Figure 4). The impact of climate change
on Rift Valley fever virus infections is clearly relevant and
has been subject to a recent review [83]. Wild and domes-
tic animals are infected and serve as amplification hosts
to create more infected mosquitoes. RVFV may be trans-
mitted to other mosquito species which serve as bridging
vectors to other wild and domestic animals and to
humans which may cause further amplification of the
transmission cycle [[84], Figure 4].

These examples show that RVFV, without any doubt, is
one of the most aggressive migrating arbovirus. The
routes of dispersal detected so far seem to be in parallel
with the great migration routes of camels. Therefore,
there is some good evidence that viremic, but non-symp-
tomatic infected camels transported the virus to Egypt

Figure 4 Schematic drawing of the development from an endem-
ic transmission cycle through an epizootic transmission cycle to 
epidemic transmission of Rift Valley fever virus.
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and possibly also to the Arabian Peninsula [85]. As also
humans may serve as amplifying hosts, the introduction
of RVFV by viremic humans seems possible and proba-
ble. In 2008, one case of RVF was diagnosed retrospec-
tively in Germany in an ill woman, who had returned
from Africa [86]. However, few data exist on the vector
competence of European mosquito species for RVFV. Ini-
tial results on the dissemination rates in some infected
mosquito species tested, suggest that most of these may
serve as vectors [87]. Likewise, an introduction into the
United States may be possible, as was seen for West Nile
virus in 1999. Several ways of introduction were dis-
cussed, and the risk of importation into the US by
infected animals, by infected people, by mechanical
transport of infected insects, intercontinental wind-
borne transport of RVFV- bearing insects, and also by
intentional introduction and release of RVFV were
assessed [88]. Studies on the vector competence of
Northern American mosquitoes showed that several
common species (Aedes vexans, Culex erraticus, Culex
nigripalpus, Culex quinquefasciatus, Culex salinarius)
can be infected and develop systemic infection. However,
only Aedes vexans and Culex erraticus developed virus
titres which were high enough to transmit the virus to
laboratory animals [89,90]. Therefore with the presence
of competent vectors and large populations of naive, non-
immune wild and domestic ruminants (and possibly
humans), the necessary factors exist in North America to
establish a transmission cycle (Table 1). Similar studies
for Europe are still missing. However, there is little doubt
that vectors and ruminants are present in Europe to allow
establishing of at least temporary enzootic transmission
cycles (Table 1).

Usutu virus
Usutu virus (USUV) belongs to the Japanese encephalitis
serogroup within the mosquito-borne cluster of the
genus Flavivirus in the family Flaviviridae [91]. It was
originally isolated from mosquitoes of the genus Culex in
South Africa in 1959. Since that time the virus was iso-
lated several times from mosquitoes, rodents and birds
throughout Sub-Saharan Africa [92]. There has been
some limited information that USUV may be the etio-
logic agent of a mild human disease with fever and rash
[93]. In 2001, USUV suddenly emerged in the area of the
Austrian capital Vienna and caused widespread deaths
among the population of Eurasian blackbirds (Turdus
merula) and some other bird species. USUV could be
detected the following years and its area of distribution
extended into south-east (Hungary), south (Italy), west
(Switzerland), and north (Czech Republic, Poland) of the
original location of emergence where it also caused mor-
tality in birds [55,94,95]. In 2009, USUV was shown to
exhibit human pathogenicity when it was for the first

time detected to cause neuroinvasive infection in two
patients with immune deficiency (orthotopic liver trans-
plantation, B cell lymphoma) in Italy [96,97]. USUV, most
probably was introduced into Austria via viremic birds
returning from their winter migration from Africa to
Europe. Another possible way of introduction could be
the transport of virus-infected mosquitoes from Africa to
Austria via airoplane, as the location of emergence in
Austria, Vienna, harbours the largest international air-
port in Austria.

USUV is thought to be maintained in nature in a mos-
quito-bird transmission cycle. In Africa ornithophilic
mosquitoes of the genera Culex, Coquillettidia and Man-
sonia are thought to be the main vectors. In Austria,
Culex spp. may play a major role, although USUV so far
has not been isolated from mosquitoes but has been
detected in overwintering Culex pipiens pools by real
time RT-PCR (our own unpublished results). There
seems to be a mode of adaptation of the virus to the new
bird species and/or to the new mosquito species in
Europe. After high mortality rates in blackbirds during
the first two years of emergence of USUV, in the following
years increasing rates of seropositive birds were detected
in Austria which gave evidence for a continuing circula-
tion of USUV with a somewhat lower pathogenicity,
inducing an herd immunity in the bird populations [94].

USUV appears as an impressive example for the intro-
duction and permanent establishment of a so-called
"tropical" arbovirus in moderate climates. In a recent
study, it was argued that USUV is mainly maintained in a
natural cycle in areas of Austria with a minimum of at
least ten hot days (> 30°C) [98]. In this simulation it is
predicted that USUV will become endemic in larger parts
of Central Europe until the end of the century. According
to the presented model, optimal environmental condi-
tions for outbreaks of USUV will occur in about 10 years
from now on [98]. Whether USUV will develop in a simi-
lar way as WNV did in the Americas remains to be seen
in the future. And even more striking is the question
whether the closely related WNV would behave in a simi-
lar way.

Tick-borne encephalitis virus
So far, only the invasive potential of mosquito-borne
arboviruses has been discussed. The example of tick-
borne encephalitis virus (TBEV) shows that also tick-
transmitted arboviruses may be able to invade new areas.
TBEV is a flavivirus of the tick-borne group of the genus
Flavivirus in the family Flaviviridae [99]. It is distributed
in the northern hemisphere of Europe and Asia. There, it
is transmitted in nature by hard ticks (Ixodidae, almost
exclusively Ixodes ricinus and Ixodes persulcatus). The
natural vertebrate hosts of TBE virus are small rodents of
the genera Myodes and Apodemus, although other
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Rodentia or Eulipotyphla (formerly: Insectivora) may
contribute to the natural transmission cycle [[99]; see Fig-
ure 5]. In contrast to mosquitoes, ticks do not depend on
a sufficient viremia of the infected host to take up an
arbovirus. While blood-feeding until repletion of a mos-
quito is a question of a few minutes, ticks are attached to
their host for up to a week. So-called saliva-assisted
transmission (SAT) is the indirect promotion of arbovirus
transmission via the actions of tick saliva molecules on
the vertebrate host [100]. The skin site where ticks feed is
highly modified by the pharmacologically active mole-
cules secreted in the tick saliva. This phenomenon is cru-
cial in maintaining a threshold level of infected tick
individuals in a tick population through a mechanism
known as co-feeding. Co-feeding is facilitated through
feeding of a number of ticks in close proximity on the
host skin and mediated via the tick saliva. During co-
feeding, pathogens such as TBEV are transferred from
one tick to another [101]. Adults and immature ticks
(either larvae or nymphs) feed on the same reservoir host,
mostly rodents, thus transmitting and maintaining the
arbovirus between the different life stages of the vector.

Co-feeding and thus the TBEV prevalence in an enzootic
focus depends on the simultaneous presence of nymphs
and larvae (and adults) on the vertebrate host. As for
Ixodes ricinus in Europe, larvae become active above 10°C
while nymphs start searching for suitable hosts at 7°C.
This means, among many other factors, that a fast warm-
ing in spring will be beneficial for co-feeding and in turn
will result in higher numbers of TBEV-positive ticks
[102,103].

TBEV is the most important tick-transmitted arbovirus
of human pathogenicity in Europe and Asia [104,105]. An
estimated 10000 to 15000 human cases occur annually
with a fatality rate of 1% (Western subtype) to up to 20%
(Far Eastern subtype) [106,107]. The geographic origin of
the emergence of TBEV has been known due to compara-
tive sequence studies for several years. These studies
show that TBEV originated somewhere in the Siberian or
Far Eastern area [108]. From there, the virus dispersed to
the south and to the west. During its movement new sub-
types and viruses evolved: the western subtype of TBEV
and louping ill virus on the British islands, in Spain and in
Norway [109]. The movement into the eastern direction

Figure 5 Schematic drawing of the transmission cycle of tick-borne encephalitis virus.
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finally ended in the evolution of the Far Eastern subtype
(in China and Japan) and Powassan virus which is preva-
lent in Russia and in Northern America [109,110]. More
additional available viral sequences showed that TBEV
was introduced at least three different times to Japan
alone during the last several hundred years [110]. How-
ever, not much is known about the possible ways how
TBEV disperses over long distances. As humans and
domestic animals (cattle, goat, and sheep) and game ani-
mals (deer, boar, fox, and wolf ) do not develop high vire-
mias they are unable to re-infect ticks during blood-
sucking (dead-end hosts). Therefore, viremic humans and
animals seem not to play a role in transporting TBEV into
new areas. Mainly goats and, to a lesser extent, also cattle
and sheep may transmit the virus via milk to their off-
spring. In case of trading raw milk and cheese products,
the virus can be transported and can infect humans [111],
but the mode of dispersal cannot result in establishing a
new TBEV focus (Table 1). Scandinavian researchers
showed that the migration of birds could play a major role
for the migration of tick-borne viruses. They found ticks
(mainly larvae and nymphs of Ixodes ricinus) on every
30th bird which migrated in autumn from Northern
Europe towards the South. About one out of 2200 migrat-
ing birds carried a TBEV-infected tick [112]. These data
offer new insights into the potential migration of TBEV
over long distances. However, no phylogenetic relation-
ship between TBEV strains from northern Europe and
from Central Europe could be detected. A new phyloge-
netic study of more than 160 TBE virus strains from the
Siberian region shows that TBEV in Russia moved along
the main transport routes in Russia [113]. At least two
introductions from Siberia into western direction are
detectable. These invasions of TBEV into western parts of
Russia and the Baltic countries can be associated with
major human activities, the construction of the first land
road into Siberia and the construction of the Trans-Sibe-
rian Way [113]. The anthropogenic factor, i.e. human
activity therefore seems to be the most important factor
for the distribution of TBEV into the western parts of
Europe. Potential ways of transport may be viremic
rodents which follow humans on the main routes or
virus-infected ticks which are carried by humans or
human-associated animals (Table 1).

Powassan virus
Powassan virus (POWV) is the sole member of the tick-
borne encephalitis serological complex of flaviviruses in
North America. It received its name after the town Pow-
assan in Ontario, Canada, were it was isolated from the
brain of a child deceased after encephalitis in the late
1950th [114] and a couple of years earlier from ticks col-
lected in Colorado, USA [115]. The latter was initially
name deer tick virus and listed as a distince virus species

DTV, but recent molecular analyses placed DTV as a gen-
otype of POWV [116-118]. More interesting is the ecol-
ogy of POWV, since it seems to exist in three rather
discrete enzootic cycles: Ixodes cookie and woodchucks
and mustelids; Ixodes marxi and squirrels; Ixodes scapu-
laris and white-footed mice [119]. POWV has also been
found in considerable numbers in Dermacentor ticks,
namely D. andersoni and D. variablis but the correspond-
ing enzootic cycle has not ben explored in further detail.
Vertical transmission of POWV was observed in Ixodes
scapularis [120]. The current distribution of POWV with
parts of Canada and the USA, as well as Parts of Russia is
interesting because it suggests that the Bering Strait had
to be crossed at least once in history to explain the cur-
rent geographical range of POWV. Phylogenetic studies
of the TBE serogroup viruses place an Eurasian progeni-
tor as common ancestor for POWV in North America
[121]. One way of how POWV could have been intro-
duced is by animals moving across the Bering land bridge
during a recent glacial period or by migrating birds (as
discussed above for TBEV). The tight clustering of Rus-
sian and Canadian strains suggests a rather recent intro-
duction perhaps along with American mink that were
imported to support fur trade [122]. So this is likely
another example of the emergence of an arbovirus by ani-
mal trade.

It is interesting that for other tick-borne arboviruses,
similar results on the importance of human activities for
the spread into new, non-endemic areas are evolving.
Kyasanur Forest virus, a virus related to TBEV is limited
to some regions (Karnataka) in India [123]. However, a
few years ago a closely related tick-borne virus, Alkhurma
virus, was detected in cases of hemorrhagic fever in Saudi
Arabia [123]. Also for this virus, mainly human activities
are suspected for the recent dispersion by viremic ani-
mals or virus-infected ticks from India to the Arabian
Peninsula. For another tick-borne arbovirus, Crimean-
Congo Hemorrhagic Fever virus, human activities and
changes in agricultural practices seem to be a major fac-
tor for emergence and distribution during the last years
[124]. Louping ill virus is a relative of TBEV. This virus
probably evolved on the British Isles from the introduced
TBEV strain(s) [125]. Louping ill virus was transported
with human activities to the Iberian Peninsula where a
new subtype of the virus has evolved since then (Spanish
sheep encephalitis virus). It was also transported to Nor-
way where it is now dispersing, possibly due to climatic
changes, to the north [125].

Conclusions
Arboviruses are maintained in nature in complex trans-
mission cycles between arthropods and vertebrates. They
have developed strategies of adaptation and evolution to
spread into new areas and eventually become established.
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Several recent examples show, that tropical arboviruses
are capable to spread to countries with moderate cli-
mates. While bird-associated mosquito-borne viruses
seem to be transported mainly by migrating birds, human
activities (travel, trade) play a major role for arboviruses
where humans play a role as natural vertebrate hosts.
Also for tick-borne arboviruses, mainly human activities
seem to contribute to the spread over long distances and
the establishment in new ecosystems changed by human
activities. In most cases of newly emerging zoonotic
arboviruses, the ways of introduction remain obscure.
Future research should aim at exploring the circum-
stances of these events. A better understanding of how
arboviruses travel and why they become established in
other geographic areas will be of great benefit for human
and veterinary public health, because it may help to pre-
vent devastating outbreaks of arboviral diseases in
humans and animals.
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