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Abstract 

Introduction: The baseline endemicity profile of lymphatic filariasis (LF) is a key benchmark for planning control pro-
grammes, monitoring their impact on transmission and assessing the feasibility of achieving elimination. Presented in 
this work is the modelled serological and parasitological prevalence of LF prior to the scale-up of mass drug adminis-
tration (MDA) in Nigeria using a machine learning based approach.

Methods: LF prevalence data generated by the Nigeria Lymphatic Filariasis Control Programme during country-wide 
mapping surveys conducted between 2000 and 2013 were used to build the models. The dataset comprised of 1103 
community-level surveys based on the detection of filarial antigenemia using rapid immunochromatographic card 
tests (ICT) and 184 prevalence surveys testing for the presence of microfilaria (Mf ) in blood. Using a suite of climate 
and environmental continuous gridded variables and compiled site-level prevalence data, a quantile regression forest 
(QRF) model was fitted for both antigenemia and microfilaraemia LF prevalence. Model predictions were projected 
across a continuous 5 × 5 km gridded map of Nigeria. The number of individuals potentially infected by LF prior to 
MDA interventions was subsequently estimated.

Results: Maps presented predict a heterogeneous distribution of LF antigenemia and microfilaraemia in Nigeria. 
The North-Central, North-West, and South-East regions displayed the highest predicted LF seroprevalence, whereas 
predicted Mf prevalence was highest in the southern regions. Overall, 8.7 million and 3.3 million infections were pre-
dicted for ICT and Mf, respectively.

Conclusions: QRF is a machine learning-based algorithm capable of handling high-dimensional data and fitting 
complex relationships between response and predictor variables. Our models provide a benchmark through which 
the progress of ongoing LF control efforts can be monitored.
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Introduction
LF is thought to be endemic in large parts of Nigeria [1]. 
Although endemicity mapping is mostly completed at 
district level nationwide [2], some districts in the North-
East remain unmapped mainly due to security issues. 
For mapped areas, there is a need to further understand 
intra-district heterogeneity in prevalence. Modelling 
has shown that the success of control programmes to 

interrupt LF transmission highly relied upon the intensity 
of transmission prior to the scale-up of MDA interven-
tions [3]. Therefore, knowing the spatial heterogeneity 
in the intensity of infection throughout implementation 
areas, as opposed to simply endemic/non-endemic clas-
sification, would enable control programmes to iden-
tify areas which may require enhanced interventions 
as they approach the endgame in the elimination path-
way. Furthermore, producing maps based on a model-
ling approach serves as a tool to validate endemicity 
maps that are already in use for control programmes 
and potentially identify any discrepancies in endemicity 
classifications.
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Control of LF is largely based on MDA interventions, 
whereby entire endemic populations are treated with 
repeated rounds of antifilarial medications. Prior to the 
implementation of this interventions it was necessary 
to determine the endemicity status of the geographi-
cal areas to be treated [4]. Mapping surveys relied upon 
the detection of circulating filarial antigens in blood 
samples of adults from selected communities using a 
rapid ICT card [5]. However, prior to the existence of 
ICT tests, LF diagnosis was based on the detection of 
circulating filarial worm, Mf, by microscopic examina-
tion of thick blood smears [6]. These tools are key to 
LF control programmes because they inform decisions 
regarding endemicity status, allow for monitoring con-
trol interventions and ultimately provide the necessary 
evidence of interruption of infection transmission.

Although Rapid Assessment of the Geographical Dis-
tribution of Bancroftian Filariasis (RAGFIL) surveys 
have been used to generate initial estimates of the bur-
den of LF [7, 8], these estimates have been improved 
upon by the use of geostatistics. Geostatistical model-
ling has enabled the prediction of infection prevalence 
in unsampled locations across large geographical areas 
using a suite of potential disease drivers such as climate, 
environmental and demographical data [9–15]. Mod-
els that take into account the spatial structure of the 
infection distribution are commonly used both in fre-
quentist [16] and Bayesian [17] modelling frameworks 
for prevalence mapping. The importance of accounting 
for spatial effects in prevalence models has been pre-
viously explored [18–20], and methods for handling 
spatially correlated data have been suggested [16, 17]. 
Generalised linear models with spatially correlated 
random effects, otherwise known as generalised linear 
spatial models (GLSMs), are widely used to fit binomial 
data with spatial structure [18]. Despite this being the 
method of choice for modelling prevalence data for a 
variety of diseases including schistosomiasis [21], LF 
[10] and malaria [22], a major drawback of GLSMs is 
their limitations to handle high-dimensional, non-
linear and collinear predictors and response datasets 
[23]. Machine learning based algorithms have proven 
to be powerful tools to handle complex relationships 
between continuous and binary data and independent 
covariates [24, 25], but little is known about their per-
formance when it comes to modelling binomial data 
obtained through randomised surveys [26].

In this study, a model was trained based on baseline 
prevalence data collected through mapping surveys 
conducted across Nigeria and a suite of environmental 
and demographic data using a machine learning algo-
rithm, Quantile Regression Forest (QRF). Then, the 
trained model was used to predict the prevalence and 

related uncertainty for unsampled locations based on the 
selected predictors.

Methods
Lymphatic filariasis data
Community-level prevalence data (both ICT and Mf) 
collected during nationwide mapping surveys conducted 
by the Nigeria Lymphatic Filariasis Control Programme 
from 2000–2013 was used in this analysis. Also, historical 
data, mostly surveys based on parasitological diagnosis 
(Mf detection), publicly available and assembled by the 
Global Atlas of Helminth Infections [27] were included. 
All surveys were conducted prior to the implementation 
of MDA interventions. Up to two communities were sur-
veyed by local government area (LGA) during nationwide 
mapping. The LGA corresponds to the second adminis-
trative level for Nigeria and is considered the geographi-
cal area for the implementation of control interventions, 
thus called the implementation unit (IU).

Within each IU at least one sample village was ran-
domly selected for survey and a buffer zone of at least 50 
km separated pairs of sample villages. LF endemicity was 
estimated by testing for filarial antigenemia in peripheral 
blood using rapid ICT. For sample villages recording ≥ 
1% prevalence, the entire IU is considered endemic for 
LF. IUs which have frequent reports of hydrocele and 
lymphedema are strongly suspected to have high ende-
micity for LF. Such villages are thus identified as sentinel 
sites for evaluating control programmes and, in addition 
to ICT card test, LF burden is estimated by Mf load in 
venous blood collected during night-time surveys. The 
timing of blood collection coincides with the appearance 
of Mf in blood, known as nocturnal periodicity. The sam-
pling methodology for the LF surveys has been described 
in greater detail elsewhere [28]. The mapping methodol-
ogy described above, however, does not apply to urban 
LF infections mainly due to the differences in LF vectors 
and living conditions between urban and rural areas [29].

For this analysis, we had 1103 ICT and 184 Mf preva-
lence estimates (Fig.  1). These were all pre-intervention 
data testing 142,881 survey participants, 15 years or 
older. In building the model, we utilized both ICT and 
Mf observed prevalence, creating a new covariate ‘diag-
nostic type’ (an indicator variable) to assess the effects of 
diagnostic method on the spatial distribution of LF. Mean 
observed prevalence for ICT and Mf were 9.5% and 5.0%, 
respectively.

The spatial correlation in the observed LF prevalence 
dataset was measured using a variogram analysis. The 
variogram gives a measure of the variability between 
pairs of datapoints [18]. This is important as it was 
used to assess the degree of spatial autocorrelation that 
remains on the residuals of the fitted models. Figure  1 
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shows the distribution of survey locations for ICT and 
Mf respectively.

Climate and environmental predictors
Continuous gridded maps of climate, topography, veg-
etation and land use for Nigeria were obtained from dif-
ferent sources. All variables considered had biologically 
plausible association to LF prevalence. In total, 17 envi-
ronmental variables were considered in the construction 
of this model. Precipitation and temperature variables 
processed from the WorldClim database were all long-
term (1950–2000) averages of data from weather stations 
distributed across the world [30]. A detailed descrip-
tion of these predictors and their processing is provided 
in our previous work [28]. All input grids raster covari-
ates were resampled to a common spatial resolution of 
1 × 1 km2 using the nearest-neighbour algorithm [31].

Quantile regression forest models
QRF is an extension of Random Forest (RF) and is 
adept at handling large, complex datasets [32]. RF algo-
rithm is an ensemble learning method for classification 
and regression based on the construction of regression 
decision trees. This machine learning-based algorithm 
has proven to outperform other approaches under simi-
lar modelling problems [33, 34]. Briefly, trees are grown 
through recursive partitioning into binary splits from 
a primary root node which contains all data. For each 

split, a random subset of predictor variables (approx. 
one third) is used to grow new root nodes. Each parti-
tion contains a different random bootstrapped sample 
(approx. two thirds) of the dataset. Using bootstrapped 
samples avoids the problem of overfitting in RF models 
[35]. This process is repeated until a terminal node is 
reached, and the average of all the trees is used to make 
predictions. The response variables not selected during 
binary node splits, known as the ‘out-of-bag’ cases, are 
used to evaluate the predictive accuracy of the model 
and generating estimating the variable importance.

In RF models (for regression), only the mean of the 
bootstrapped response variable is considered when 
splitting/growing trees and for quantile determination 
[34]. All other features of the response variable of pos-
sible interest are neglected. QRF was thus developed to 
consider all the values in the response variable for split-
ting and quantile determination [32, 36, 37]. Therefore, 
QRF enables the estimation of any quantile from the 
entire posterior conditional distribution for a modelled 
outcome. Accounting for all the features of the response 
variable is thought to give a more complete picture of 
the dataset and resulting predictions [38]. The RF and 
QRF algorithm uses bagging to randomly resample the 
training dataset (with replacement of original data) 
and builds a forest of trees, whereas boosted regres-
sion trees use boosting to randomly resample training 
dataset (without replacement) and builds a sequence 
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Fig. 1 Location of study sites in Nigeria showing the prevalence of lymphatic filariasis. a Immunochromatographic test (ICT). b Microfilaria (Mf )
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of trees with each added tree focussing on poorly fitted 
nodes.

In this work, an RF model is initially fitted to tune 
parameters for use in the QRF. Here a 10-fold internal 
cross-validation was performed and repeated 5 times 
on empirical logit-transformed infection prevalence and 
set of predictors. The empirical logit-transformation of 
infection prevalence was weighted by number of individ-
uals examined using the following formula:

where  Yi is the observed number of people infected at 
location i and mi is the number of people examined.

This tuning process informs an optimum number 
of predictor variables to be considered at each node split
Using the optimal number of predictors yielded above, 
a QRF model was then constructed. For the QRF model, 
data were partitioned into two, with a random subset of 
25% of the complete dataset retained for model valida-
tion and the remaining 75% used to train the model. The 
mean, median and prediction intervals estimates were 
obtained and projected over a continuous geographi-
cal space at a spatial resolution of 5 × 5 km. The RF and 
QRF models were implemented using the randomForest 
[39] and quantregForest [32] packages, respectively, in R 
(v.3.3.2) [40]. Predictive maps were exported into ArcGIS 
v10.3 for preparing map layouts [41].

Model evaluation was performed using the validation 
dataset based on the root mean squared error (RMSE) 
and R-squared scores (R2). Variable importance was rep-
resented by percentage increase in mean square error 
(%IncMSE). The %IncMSE is estimated with out-of-bag 
cross-validation as a result of a variable being permuted 
(values randomly shuffled). The difference between the 
calculated mean square errors is then averaged over all 
trees and then normalised by the standard deviation of 
the differences [42]. If a predictor is important in the 
model, then assigning other values for that predictor ran-
domly should have a negative influence on prediction, 
thereby resulting in a higher %IncMSE value. To check 
for the existence of spatial structure on the data not 
captured by the predictors after implementing the QRF 
model, an empirical variogram was calculated based on 
the residuals of the QRF model. The Pearson’s correlation 
coefficient was calculated between pairs of observed and 
predicted ICT and Mf values. Results were presented as 
95% prediction intervals and P-values.

From the final predicted prevalence maps, the number 
of people infected with LF was calculated. By overlaying 
the prevalence predictions on 2010 gridded population 

Ỹi = log

(

Yi +
1
2

mi − Yi +
1
2

)

: i = 1, . . . , n

density estimates obtained from the WorldPop Africa 
repository [43], on a cell-by-cell basis, estimates for the 
infected population in each cell was generated. Popula-
tion density data available for Nigeria were for the years 
2006, 2010, 2015 and 2020. As the survey data used for 
building the models spanned from 2000–2013, we esti-
mated the population infected based on population den-
sity estimates of 2010. All cells were summed up to get 
estimates for mainland Nigeria. This analysis was calcu-
lated using the Zonal Statistics function within the Spa-
tial Analyst Tool in ArcGIS v10.3 [41].

Results
Analysis for the models was performed using a total of 
1287 site-level infection prevalence surveys for ICT 
(1103 surveys) and Mf (184 surveys) tests respectively as 
shown in Fig. 1.

Variogram analysis
The results of the variogram analysis (Fig. 2) indicate that 
there is significant spatial correlation in the observed 
ICT prevalence data. The range of spatial correlation is 
about 250 km after which the points start flattening out, 
an indication of the limit of spatial correlation between 
datapoints. Conversely, for Mf prevalence, there is lim-
ited evidence of spatial correlation, even at shorter 
distances.

Variable importance plot
Figure 3 shows the variable importance plot of the QRF 
model trained using LF prevalence data. Here, %IncMSE 
shows that diagnostic type, precipitation in the driest and 
wettest quarter, distance to permanent water bodies and 
land surface temperature were the 5 most important pre-
dictors for constructing our model.

Predicted ICT and Mf prevalence
Predicted prevalence estimates were projected on the 
map of mainland Nigeria based on a suite of climate 
and environmental predictors at a spatial resolution of 
5 × 5 km. RMSE and R-square values for the model were 
1.24 and 0.40, respectively.

The maps presented in Fig.  4 is the predicted median 
and upper and lower bounds of ICT prevalence of LF 
in Nigeria. The median ICT map suggests a high preva-
lence of LF primarily in three out of six regions in Nige-
ria, namely North-West, North-Central and South-East 
of Nigeria. Also, transmission appears to be high in the 
South-West state of Ekiti.

The median Mf maps in Fig.  5 shows a distinct spa-
tial pattern of LF, predicting a higher Mf prevalence in 
much of the southern region of Nigeria and along the 
course of Niger and Benue rivers. All regions (except the 
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Fig. 2 Variogram plot showing the spatial correlation in observed LF data. a Immunochromatographic test (ICT). b Microfilaria (Mf ). The empirical 
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North-West) had predicted prevalence exceeding 1% for 
Mf.

Validation of predictive models
The variogram fitted on the residuals demonstrates that 
the trained QRF model, despite this not being a spatially 
explicit model, was able to capture, through some of the 
spatially varying predictors, the spatial structure in the 
observed ICT and Mf prevalence (Fig. 6). When explor-
ing the correlation between observed and predicted ICT 
and Mf prevalence, there was a significant positive cor-
relation: Pearson’s coefficient of 0.63 (95% CI: 0.57–0.67) 
and 0.51 (95% CI: 0.37–0.60) between observed and fitted 
values for ICT and Mf prevalence respectively.

Also, cross-validation of the predicted LF prevalence 
using a subsample of 25% of the observed data was per-
formed (Fig.  7). Predictive intervals (shadow area) have 
been centred and observed prevalence for held-out sub-
sample plot on it. 75.2% of the surveys fall within the pre-
diction intervals. In Additional file 1: Figure S1, predicted 
prevalence values are plotted against observed preva-
lence. Those plotted in red had observations outside of 

the 95% prediction intervals while those plotted in blue 
had observations inside the 95% prediction intervals. 
Many of the observations plotted in red had 0% observed 
prevalence.

Estimating population infected with lymphatic filariasis
The mean human population infected with LF is esti-
mated to be 8.7 million and 3.3 million for ICT and Mf 
respectively (Table  1). This amounts to a national prev-
alence of 5.3% for ICT and 2.0% for Mf. Total national 
population for Nigeria for 2010 was derived from gridded 
population density estimates from the WorldPop reposi-
tory [43, 44].

Discussion
Maps produced in this analysis are intended to estimate 
the prevalence of LF in unsampled locations, highlight 
intra-district heterogeneity of infection, and estimate 
the population infected with LF. These would help guide 
programme activities for a more focussed intervention. 
Here, our results are particularly helpful in classifying 
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LGAs in Borno State which are yet to be mapped under 
the national mapping survey.

The predicted prevalence levels of LF ICT and Mf pre-
sented here demonstrate that LF distribution in Nigeria 

is largely ubiquitous. For ICT, prevalence estimates were 
highest in the North-Central (8.2%), North-West (7.8%), 
and South-East (7.1%) regions, and lowest in the South-
South (2.5%) region. In contrast, prevalence estimates 
for Mf were generally higher in the southern than in the 
northern regions. Overall, predicted mean national prev-
alence was 5.3% and 2.0% for ICT and Mf, respectively. 
As MDA for LF is ongoing in Nigeria, robust estimates of 
baseline prevalence are important for evaluating the effi-
ciency of control efforts.

Models provided state-level LF prevalence predictions 
for Nigeria, delineating within-region heterogeneities in 
infection prevalence. The ICT prevalence estimates gen-
erated from this analysis are in keeping with earlier work 
describing the environmental suitability of LF in Nigeria 
(Additional file 2: Figure S2) [28]. Both maps also corre-
spond well with the distribution of Anopheles spp., which 
is the chief vector for LF transmission in Nigeria [29] and 
endemicity maps of the national LF control programme 
[2]. The climate and environmental variables that con-
tributed the most to predicting the prevalence of LF in 
unsampled locations were precipitation, land surface 
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temperature, and distance to permanent water bodies. 
The influence of these variables on the mosquito vectors 
and their effect in driving the transmission of LF has been 
discussed in our previously published work [28]. Machine 
learning methods have been widely used to model distri-
bution of various parasitic diseases, both for species clas-
sification [45] or for regression analysis [34]. Their ability 
to handle non-linear associations between response and 
predictor variables, control for interactions among pre-
dictor variables and handle large complex datasets is a 
major advantage of these methods [34].

In this work, the prevalence of LF in Nigeria was mod-
elled using the QRF algorithm which is an extension of 
the RF. The models were constructed by combining infec-
tion prevalence data from both ICT and Mf diagnostic 
types; however, final maps were projected according to 
diagnostic type. The main reason for the uneven avail-
ability of ICT and Mf data is that the ICT-based survey 
is considered the method of choice for the mapping of 
LF prior to intervention, and has been used for this pur-
pose since 2000. In contrast, Mf surveys were conducted 
only in areas suspected to be highly endemic for LF, using 
lymphedema and hydrocele cases as an indicator for high 
endemicity. This left large portions of the country with-
out Mf survey points, with some states with no survey 
points at all, while others were very sparsely surveyed. 
A visual observation of the Mf survey plot shows more 
dense clustering of the surveys in the southern parts of 

the country. This selective sampling of sites may have 
biased the Mf survey locations as hard-to-reach and 
more rural areas are more likely to be ignored. Also, as 
blood testing is performed at night (between 10 pm and 
2 am) to coincide with the nocturnal periodicity of the 
parasite in blood, this cumbersome approach may be a 
contributing factor to a biased and selective survey.

The ICT and Mf prevalence predictions presented in 
this work are distinctly different. It is well known, how-
ever, that estimates for ICT are generally higher than 
Mf estimates even in surveys conducted in similar loca-
tions [5]. Understanding this contrasting prevalence val-
ues is an ongoing challenge in LF research and previous 
works have attempted to model the relationship between 
ICT and Mf prevalence [46, 47]. Irvine et  al. [46] dem-
onstrated that ICT and Mf prevalence is a consequence 
of the distribution of adult worms and the subsequent 
microfilariae production, although it is suggested that 
ICT prevalence is relatively uninformative in provid-
ing estimates of the infective pool [46]. This is mainly 
due to the therapeutic action of MDA and the nonlinear 
relationship between adult worm burden and Mf output 
[46]. Mf prevalence provides a more accurate estimate of 
microfilariae worm load and thus, a good tool for meas-
uring infectious pool within LF endemic communities.

Furthermore, the treatment regimen used for MDA is 
known to be more effective against the microfilariae and 
less so for the adult worms [48]. Therefore, following 

Fig. 7 Cross-validation of the predicted lymphatic filariasis prevalence using a subsample of 25% of the observed data
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Table 1 Estimated number of people infected with lymphatic filariasis prior to MDA using 2010 population estimates

Abbreviations: ICT, immunochromatographic test, LF, lymphatic filariasis, MDA, mass drug administration, Mf, microfilaria

Region State Estimated no. of people infected with  
LF (% prevalence of Mf )

Estimated no. of people infected with  
LF (% prevalence of ICT)

Total population

North-Central

Benue 69,433 (1.4) 266,245 (5.5) 4,853,000

Kogi 77,475 (2.0) 182,144 (4.7) 3,838,000

Kwara 45,953 (1.6) 115,596 (4.1) 2,852,000

Nasarawa 42,696 (2.0) 227,455 (10.6) 2,151,000

Niger 85,667 (1.9) 282,768 (6.2) 4,538,000

Plateau 71,432 (2.0) 364,561 (10.0) 3,659,000

FCT 24,525 (1.6) 125,614 (8.2) 1,537,000

Subtotal 417,191 (1.8) 1,912,940 (8.2) 23,428,000

North-East

Adamawa 76,843 (2.3) 209,067 (6.4) 3,272,000

Bauchi 25,366 (0.5) 332,294 (6.3) 5,257,000

Borno 59,503 (1.3) 205,103 (4.3) 4,752,000

Gombe 43,744 (1.6) 149,619 (5.4) 2,773,000

Taraba 70,051 (2.6) 159,935 (6.0) 2,657,000

Yobe 27,115 (1.0) 209,281 (7.9) 2,652,000

Subtotal 302,622 (1.4) 1,265,299 (5.9) 21,363,000

North-West

Jigawa 48,972 (1.0) 343,852 (6.8) 5,054,000

Kaduna 17,790 (0.3) 385,812 (5.6) 6,927,000

Kano 91,093 (0.8) 717,153 (6.7) 10,765,000

Katsina 58,317 (0.9) 477,381 (7.3) 6,550,000

Kebbi 54,026 (1.4) 395,222 (10.5) 3,758,000

Sokoto 42,794 (1.0) 275,762 (6.7) 4,137,000

Zamfara 44,103 (1.2) 597,723 (16.2) 3,689,000

Subtotal 357,095 (0.9) 3,192,945 (7.8) 40,880,000

South-East

Abia 161,906 (5.0) 163,240 (5.0) 3,269,000

Anambra 212,657 (4.4) 330,448 (6.9) 4,819,000

Ebonyi 138,351 (5.9) 206,495 (8.8) 2,345,000

Enugu 97,200 (2.6) 261,480 (7.0) 3,717,000

Imo 186,002 (4.2) 349,292 (7.9) 4,402,000

Subtotal 667,299 (3.6) 1,310,955 (7.1) 18,552,000

South-South

Akwa Ibom 238,460 (5.3) 163,240 (3.7) 4,461,000

Cross River 199,383 (5.7) 129,921 (3.7) 3,472,000

Bayelsa 101,747 (4.9) 63,079 (3.0) 2,087,000

Rivers 157,512 (2.7) 22,927 (0.4) 5,759,000

Delta 128,923 (2.7) 136,775 (2.9) 4,747,000

Edo 121,167 (3.2) 142,754 (3.8) 3,804,000

Subtotal 947,192 (3.9) 607,609 (2.5) 24,330,000

South-West

Ekiti 455,419 (1.8) 195,280 (7.8) 2,516,000

Lagos 128,945 (0.9) 25,696 (0.2) 14,480,000

Ogun 121,225 (3.1) 109880 (2.8) 3,953,000

Ondo 117,752 (3.2) 176578 (4.8) 3,679,000

Osun 80,635 (2.0) 181,129 (4.4) 4,105,000

Oyo 98,555 (1.5) 24,512 (0.4) 6,532,000

Subtotal 598,937 (1.7) 713,075 (2.0) 35,265,000

Sum Total 3,276,360 (2.0) 8,682,068 (5.3) 163,818,000
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treatment, ICT prevalence tend to decline more slowly 
due to the continued presence of the adult worms and 
their production of the filarial antigen which is still 
detected in blood using ICT cards [48]. Mf prevalence 
declines much more quickly due to the stronger micro-
filaricidal effects of treatment. In addition, in Nigeria, 
where there are vast areas co-endemic for both LF and 
onchocerciasis [49], and of which MDA for onchcocer-
ciasis, using ivermectin, pre-dates the survey data used 
in this study. Although this study models the baseline 
prevalence of LF, it does not account for the therapeu-
tic effects of onchocerciasis treatment in LF co-endemic 
areas [50].

Although ICT and Mf prevalence maps are contrast-
ing, this is not to say that one is better or that predictions 
from the other should be disregarded. Overall, the main 
determinant factor in the QRF model for the LF preva-
lence maps is the diagnostic type (Fig. 3), indicating that 
this accounts for most of the variability in distribution. 
Understandably, ICT and Mf prevalence maps appear 
quite different from each other. However, as mentioned 
earlier, the main goal of the ICT surveys is to better 
understand the general geographical extent of infection 
transmission [7], while the Mf surveys, due to the rapid 
microfilaricidal effects of treatment, are useful for pro-
viding a more precise numerical measure with which to 
evaluate control interventions and track control progress.

The predictive accuracy of models is usually tested by 
exploring the ability of the model to correctly predict on 
an independent dataset [51]. As there was no independ-
ent dataset to test the model on, predictive accuracy 
was evaluated by calibrating the QRF model on a ran-
dom sample of 75%, and then predicting on the held-out 
25%. Predictive accuracy was measured by the value of 
the R2, which is the percentage of variation explained by 
the climate and environmental covariates included in the 
model. With an R2 value of 40%, more than half of the 
variation in the model predictions is not explained by fac-
tors included in our analysis. In this work, effects of the 
malaria control programmes (particularly bednet usage) 
and its influence on LF prevalence in areas of co-ende-
micity were not accounted for. This is perhaps a factor to 
consider going forward, as malaria and LF endemic areas 
largely overlap [52] and bednets used for malaria preven-
tion have been widespread in Nigeria [53] and have been 
demonstrated to be protective against LF [54]. Further, 
with the increase in gross domestic product of Nigeria by 
more that 10-fold (from $46.4 billion in 2000 to $514.96 
billion in 2013) [55], it is believed that general living con-
ditions are improved, providing better protection against 
mosquito vectors [56]. A larger proportion of the popu-
lation living above the poverty line and better awareness 

of the aetiology of LF and malaria may also have led to 
personal protection measures from the mosquito vectors.

Although the random forest algorithm is growing 
in popularity for use for spatial predictions, it fails to 
account for residual spatial correlations in observations 
[57], however, the inclusion of corresponding geographi-
cal coordinates of the survey dataset as a predictor could 
address this issue. The existence of spatial autocorrela-
tion on the cross-validation residuals is an indication of 
suboptimal model predictions [57]. Our results (Fig.  6) 
suggest no evidence of spatial autocorrelation in the 
cross-validation residuals.

After more than five rounds of MDA, the North-
Central states of Plateau and Nasarawa have demon-
strated evidence of interruption of transmission and in 
2017 transmission assessment survey commenced [58]. 
For large portions of the country that MDA is currently 
ongoing, findings from this work will aid re-assessment 
of programme activities. For instance, in the allocation of 
preventive chemotherapy and making sure that number 
of treatments offered are enough to achieve the stipulated 
population and programme coverage. Furthermore, there 
is a risk of resurgence in areas where transmission has 
been interrupted mainly due to the continued presence 
of mosquito vectors and within-country human migra-
tion. Areas previously identified as highly endemic for 
LF will be key in monitoring prevalence levels going for-
ward. Additionally, periodic entomological examination 
of mosquito vectors for the presence of the filarial anti-
gen (xenomonitoring) is an effective tool to determine 
whether the parasite is still present in populations where 
transmission had been interrupted [59]. This should be 
used in combination with Mf and ICT surveys, though 
caution must be exercised when evaluating control meas-
ures by testing with ICT because filarial antigenemia is 
still detected in blood samples long after MDA has been 
completed [6].

Maps are presented in this work have relatively wide 
prediction intervals. Given these wide intervals, pre-
dictions are in keeping with previous knowledge of 
LF endemicity in Nigeria [60]. However, there are sev-
eral ways to narrow intervals in QRF models. It has 
been suggested that decreasing the spatial resolution 
reduces uncertainty [38]. Lower resolution maps may 
be more useful for predicting infections at a larger 
geographical scale (for instance, continent-wide or 
on a global scale) as is intended to give estimates for 
regions rather than smaller areas within a country. 
Here maps have been projected at a 5 × 5  km spa-
tial resolution in order to better delineate intra-state 
prevalence levels. Maps produced at lower resolution 
will be a lot coarser and risk losing their intended 
purpose of estimating prevalence levels at the lowest 
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administrative level. However, mapped estimates of 
the mean prevalence estimates for ICT closely mirror 
maps describing the ecological niche of LF in Nige-
ria (Additional file 2: Figure S2) [28] and it is believed 
these prevalence estimates are a fair picture of the LF 
distribution for Nigeria.

The human population infected with LF in Nige-
ria was previously estimated to be 13.53 million [10]. 
This estimate, however, was derived from modelling 
27 infection data points of which the most recent sur-
vey was conducted in the year 1990 using population 
estimates of the year 2000. These surveys were mostly 
conducted by individual researchers in their region 
of interest with no inter-survey standardisation. The 
geographical extent and standardised protocol of the 
survey dataset used for the present analysis coupled 
with a robust modelling method provides the most 
comprehensive picture of LF endemicity in Nigeria to 
date. We however did not account for age structure in 
our population estimates; therefore, figures presented 
in this work are likely to be higher than the actual 
infected population.

Mathematical models have been used to assess the 
impact of intervention (mainly MDA and vector con-
trol) on the LF transmission [61]. The three most com-
monly used models for evaluating LF interventions 
are the population-based model, EPIFIL [62], and 
individual-based models TRANSFIL and LYMFASIM 
[63, 64]. These models have been trialled on data from 
LF endemic communities in India, Papua New Guinea 
and Kenya [61]. One key parameter in these models is 
baseline LF prevalence levels. These prevalence levels, 
however, were obtained from surveys conducted by in-
country programmes which were sometimes patchy 
and did not have complete geographical coverage 
of the area of interest. Further, these data follow the 
structure of RAGFIL mapping, where entire districts 
are classed as either endemic or non-endemic accord-
ing to results from a single survey point within the 
district. Estimates from our work, however, provide a 
comprehensive picture of the baseline LF burden for 
Nigeria. This will be invaluable data to parameterise 
these models in different settings and to assess the 
spatial heterogeneity of control efforts.

Conclusions
Modelling the baseline endemicity of infection should 
ideally be performed prior to scaling up control pro-
grammes. Good knowledge of the extent of disease bur-
den is also useful for raising awareness and serves as 
framework for advocacy for community/institutional 
engagement. Since the LF control programme is already 
ongoing in Nigeria, these model estimates provide a 

basis with which to evaluate control efforts and encour-
age more coordination towards reaching the elimina-
tion targets. Prevalence estimates provided may also 
serve as a proxy for estimating the burden LF morbid-
ity (lymphedema and hydrocele) [65] in line with plan-
ning morbidity management and disability prevention 
programmes.
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org/10.1186/s1307 1-019-3682-6.

Additional file 1: Figure S1. Cross-validation of the predicted lymphatic 
filariasis prevalence using a subsample of 25% of the observed data. Pre-
dicted prevalence values are plotted against observed prevalence. Those 
plotted in red had observations outside of the 95% prediction intervals 
while those plotted in blue had observations inside the 95% prediction 
intervals. 

Additional file 2: Figure S2. a Mean predicted prevalence of lymphatic 
filariasis in Nigeria. b Predicted environmental suitability of lymphatic 
filariasis in Nigeria [28].
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