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Abstract 

Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most 
effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mos-
quito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of 
dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence 
on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms 
involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of 
resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of 
insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of 
resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and 
improving public health. This review also provides improved insights into the specific use of insecticides for effective 
control of mosquitoes in these dengue endemic countries.
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Background
Aedes mosquitoes (Diptera, Culicidae) are the main vec-
tors for several diseases associated with arboviruses, such 
as dengue, dengue haemorrhagic fever, dengue shock 
syndrome, yellow fever, chikungunya and Zika virus 
infection. There are two medically important species of 
Aedes mosquitoes that are associated with the transmis-
sion of dengue virus: Aedes aegypti (Linnaeus, 1762) and 
Aedes albopictus (Skuse, 1984). The adults of Ae. aegypti 
and Ae. albopictus are both black in colour but they can 
easily be differentiated by the pattern of white scales on 
their dorsal side of the thorax: Ae aegypti has two straight 
lines surrounded by curved lyre-shaped lines on the side 
while Ae. albopictus has a single broad line of white scales 
at the middle of the thorax [1]. The adult female Aedes 

mates, takes blood meals, lays 60–100 eggs in artificial 
and natural containers and can survive an average of 
20–30 days. Aedes mosquitoes are considered to be day-
time biters as they bite during dawn after sunrise and at 
dusk before sunset. Upon ingestion of dengue virus from 
an infected person, the virus will multiply in the salivary 
gland of the mosquito for 8–10 days (incubation period) 
prior to transmission to another person during subse-
quent blood meals. The flight range of Aedes mosquitoes 
is relatively short, in the range of 50 to 200 m from their 
breeding sites [1].

Aedes aegypti originated from Africa as a zoophilic 
tree-hole breeder (Ae. aegypti formosus) [2] and is 
domesticated or stays in close proximity to humans 
throughout the tropical and subtropical regions out-
side of Africa. This human-adapted species is hypoth-
esised to have spread to the New World and Asia via 
increased global trade. Aedes albopictus (Skuse, 1894) 
is originally from Bengal, India and is indigenous to 
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Southeast Asia [3]. It has spread to Africa, the Middle 
East, Europe, North and South Americas and Pacific 
Islands. To date, both Ae. aegypti and Ae. albopictus 
are widely distributed throughout the world, including 
Southeast Asia [4, 5] (Fig. 1).

Four antigenically distinct serotypes of dengue viruses 
(DENV-1, DENV-2, DENV-3 and DENV-4) can be trans-
mitted to humans during the bite by an infected female 
Aedes mosquito (also known as horizontal transmission). 
Following the blood meal, the virus attaches to various 

Fig. 1 The occurrence of Aedes aegypti and Aedes albopictus in the Southeast Asia region [5].Yellow - very low; light orange - low; dark orange 
- moderate and red - high occurrence
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cellular receptors and enters via cell-mediated endocy-
tosis into midgut cells of the host. From the midgut, the 
viruses disseminate systematically via haemocoel or the 
body cavity to other secondary tissues, such as the sali-
vary glands [6]. Natural vertical transmission of dengue 
viruses from the infected females to their offspring has 
also been reported in many dengue endemic countries 
[7].

In this paper, we review the distribution of dengue 
fever from 2000 to 2020 and its associated mortality in 
each Southeast Asian country. We also gather evidence 

on the trend of insecticide resistance and its distribution 
in these countries since 2000, summarising the mecha-
nisms involved. To this end, we searched the PubMed 
(Medline), Google and Google Scholar databases for arti-
cles on insecticide resistance in dengue vectors in South-
east Asia, using the following search terms: ‘insecticide 
susceptible’ or ‘insecticide resist’ or ‘pyrethroid resist’ 
or ‘insecticide resistance’ and ‘Southeast Asia’ or ‘Asia, 
Southeastern’ and ‘dengue’. The search was limited to 
articles in English that had been published between 2000 
and 2020 (Fig. 2).

Fig. 2 PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram of identification, screening and inclusion of 
studies included in this review [8]
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Fig. 3 The number of dengue cases and its associated mortality in Southeast Asia from 2000 to 2019 [10–29]
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Dengue fever
Dengue virus can cause symptoms that range from a 
mild dengue fever to severe deadly dengue haemorrhagic 
fever and dengue shock syndrome. Annual estimates by 
Bhatt et al. [9] revealed that the number of dengue cases 
reported worldwide in 2010 was approximately 390 mil-
lion, of which 96  million represent apparent dengue 
infections (dengue haemorrhagic fever or dengue shock 
syndrome). Asia contributed 67% (47–94  million infec-
tions) to this global disease burden [9]. Most countries in 
Southeast Asia experience frequent and cyclical epidem-
ics of dengue throughout the year. The prevalence of den-
gue and its associated mortality for each Southeast Asia 
country are illustrated in Fig. 3 [10–29].

There is an additional 294 million inapparent infections 
(mild or asymptomatic) that are not detected by the cur-
rent health surveillance system [9]. Those persons with 
inapparent dengue infection may not show any clinical 
manifestations of typical dengue infections or present 
with just mild illness that does not require a visit to a 
healthcare provider or hospitalisation. Hence, the inap-
parent dengue infection may not be captured as the bur-
den of dengue infection. The prevalence of inapparent 
dengue is overwhelming and varies by geographical loca-
tion, time and demography. In Malaysia, the seropreva-
lence of dengue has been reported to range from 28 to 
92% [30, 31], with almost nine out of ten individuals who 
were dengue-seropositive not recalling having a previ-
ous dengue infection [31]. In one study, almost 10% and 
70% of individuals without any history of dengue infec-
tion in Selangor, Malaysia tested positive for immuno-
globulins M and G (IgM and IgG), respectively, against 
dengue virus, and ten out of 11 individuals with dengue 
viremia were asymptomatic [32]. Currently, the clini-
cal significance of inapparent dengue infections remains 
undetermined, but it is highly suspected that inappar-
ent dengue plays an important role in the maintenance 
of dengue transmission in the absence of an epidemic. 
Blood-feeding experiments with Ae. aegypti mosquitoes 
revealed that people with asymptomatic and pre-symp-
tomatic DENV infections (low level of viremia) are capa-
ble of infecting mosquitoes [33]. In fact, DENV-infected 
people with no detectable symptoms or before the onset 
of symptoms are significantly more infectious to mosqui-
toes than people with symptomatic infections as DENV 
viraemic individuals without clinical symptoms may be 
exposed to more mosquitoes through their undisrupted 
daily routines than sick people. Furthermore, asympto-
matic infections account for the bulk of DENV infections, 
thereby contributing significantly more to virus transmis-
sion to mosquitoes than previously recognised. Bosch 
et al. [34] revealed that people with asymptomatic infec-
tions are approximately 80% as infectious to mosquitoes 

as their symptomatic counterparts. The clinically inap-
parent infections may account for 84% of all dengue 
transmissions [34], with only 1% of DENV transmission 
attributable to people with clinically detected infections 
after they have developed symptoms.

Insecticides as a control strategy of dengue
Due to the unavailability of an effective vaccine for den-
gue, one of the best approaches to control the spread 
of dengue is by managing the vector and its breeding 
sites. Various strategic approaches have been promoted 
to control mosquito vectors, including chemical control 
(indoor residual spraying, mass fogging, use of house-
hold insecticides), biological control (use of mosquito 
predators, release of specific genetic modified mosqui-
toes), source reduction and public education. Larvicidal 
chemicals, such as temephos and Bacillus thuringiensis 
israelensis (Bti), and adulticidal chemicals in ultra-low-
volume sprays and fogging are widely used to control 
the spread of the disease. An estimated 2.5 million tons 
of pesticides are used annually [35]. There are four main 
classes of insecticides commonly used for vector control 
programmes: pyrethroids, organophosphates, organo-
chlorines and carbamates.

Organochlorines
Organochlorines (OCs) are chlorinated hydrocarbons 
that were developed in the early 1940s, and this cat-
egory includes dieldrin, lindane, chlorobenziate, chlor-
dane and the most popular chlorinated insecticide of 
all time, dichlorodiphenyltrichloroethane (DDT) [36, 
37]. OCs are effective in controlling malaria, but they 
persist in the environment as a result of their high lipid 
solubility [38, 39]. They are subdivided into two sub-
classes, namely DDT-type chlorinated insecticides and 
chlorinated alicyclic insecticides, based on their distinct 
mechanisms and target sites [38]. DDT-type insecti-
cides target the voltage-sensitive sodium channel (Vssc) 
in mosquitoes. Loughney et  al. [40] described that the 
α-subunit of the sodium channel contains four homolo-
gous domains (I–IV), with each domain characterised 
by six transmembrane segments (S1–S6). Segments 
S1–S4 constitute the voltage-sensing domain whereas 
segments S5 and S6 form pore domains along with the 
intervening pore loop. The function of Vssc is to initiate 
and propagate action potentials in response to mem-
brane depolarisation by opening and closing the chan-
nel [41]. DDT exerts its toxicity by impeding the sodium 
channels, hence retaining the conduction of sodium ions 
even after membrane repolarisation [42–44]. DDT acts 
mainly on the peripheral nervous system causing ‘DDT 
jitters’ where the muscles twitch throughout the body 
and the appendages. Exposure to DDT gradually leads to 
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excitatory paralysis and subsequent death of the insects 
[44]. Chlorinated alicyclic insecticides, in comparison, 
bind at the γ-aminobutyric acid (GABA) molecule in the 
GABA chloride ionophore complex, resulting in hyper-
excitation of the nervous system that subsequently leads 
to chlorine channel closure [45, 46].

Organophosphates
Organophosphates (OPs), a phosphoric acid derivative, 
are the most toxic insecticides and detrimental to both 
mammals and insects. The most commonly used OPs 
are malathion, parathion, chlorpyriphos and diazinon. 
OPs were introduced in the 1960s to replace the usage of 
OCs with their many adverse effects and long persistence 
in the environment [39]. OPs interfere irreversibly with 
acetylcholinesterase (AChE) activity by phosphorylating 
its serine residues, resulting in hyper-excitation and dis-
ruption of neurotransmission in the central and periph-
eral nervous systems [37, 47]. This enzyme hydrolyses 
acetylcholine and causes repolarisation of basal plate in 
neuromuscular connections in preparation for the arrival 
of the new impulses [37]. Hence, the acute symptoms of 
poisoning with OP insecticides are muscle cramps, paral-
ysis of respiratory muscles, convulsions and eventually 
death [36, 48].

Carbamates
Carbamate insecticides are derivatives of carbamic acid. 
The carbamate insecticides, such as carbaryl, carbo-
furan, propoxur and aldicarb, exhibit similar effects as 
the organophosphorus insecticides by inhibiting cho-
linesterase activity [49]. Nonetheless, the toxic action of 
carbamates can be reversed whereas the action of OPs 
is irreversible. In addition, the toxicity of carbamates is 
rather short as the residue of carbamylated serine is less 
stable, where decarbamylation tends to split the carbamyl 
moiety from the enzyme [50].

Pyrethroids
Pyrethroids are the synthetic analogues of natural insec-
ticidal esters of chrysanthemum acid, called pyrethrins, 
which are categorised into types I and II based on their 
physical properties and toxicities. These insecticides 
have been widely used for the control of disease vectors 
for more than three decades [51]. The understanding of 
pyrethroids is complicated by two distinct intoxication 
syndromes. Type I pyrethroids (permethrin, tetrame-
thrin, allethrin, phenothrin) lack an α-cyano group, and 
exposure causes tremor type syndrome by changing the 
conformation of the sodium channels for prolonged 
channel opening [51–53]. On the other hand, type II 
pyrethroids (cyfluthrin, cyhalothrin, deltamethrin, cyper-
methrin) possess an α-cyano-3-phenoxybenzyl moiety 

which produces choreoathetosis-salivation syndrome 
by modulating GABA levels and subsequently affect 
chlorine channels [51, 53, 54]. Type II pyrethroids have 
similar effects on sodium channels as type I pyrethroids, 
but with a lower amplitude of action potential. Type I 
pyrethroids give rise to repetitive discharges of sodium 
channels [38]. Previous studies have reported that the 
neurotoxicity of pyrethroids could be related to abnor-
mal voltage-gated calcium regulation [52]. Certain pyre-
throids, including cyfluthrin, cyhalothrin, cypermethrin, 
deltamethrin and permethrin, promote excessive calcium 
ion influx due to the reversed sodium–calcium exchange 
[51, 55].

Mechanisms of insecticide resistance
Massive use of insecticide-based controls has contrib-
uted to the development of insecticide resistance, with 
increased challenges in eliminating Aedes mosquitoes 
and hence an increased risk of dengue transmission. The 
mechanism of insecticide resistance may include—but is 
not limited to—target site resistance, metabolic resist-
ance, penetration resistance and behavioural adaptation 
(Fig. 4).

Target site resistance
Target site resistance in mosquitoes is inferred when the 
targeted site for the action of insecticides is genetically 
modified, thus limiting its interaction with neurotoxins 
and consequently eliminating the insecticidal effects. 
These modifications may include the Vssc mutation, 
insensitivity of synaptic acetylcholinesterase (AChE1) 
and mutation in the GABA receptor [56].

Knockdown resistance
Knockdown resistance (kdr, also known as the Vssc 
mutation) is the major mechanism of sodium channel 
insensitivity to both DDT and pyrethroids [57, 58]. Most 
Vssc mutations are located at domains IS6, IIS6 and IIIS6. 
kdr caused by point mutations of the target site, with the 
substitution of leucine (L) by phenylalanine (F), histidine 
(H) or serine (S) in Vssc in IIS6 at codon 1014, has been 
reported in mosquitoes of genera Anopheles and Culex 
[59]. In Ae. aegypti mosquitoes, various pyrethroids/
DDT resistance-associated mutations (G923V, L982W, 
I1011M/V, V410, T1520I, S989P, F1534S/L/C, D1763Y, 
V1016G/I) have been documented [60–64]. For exam-
ple, the T1520L mutation was identified in Ae. aegypti 
populations from India and the V1016G mutation in Ae. 
aegypti populations from Malaysia and Thailand [65–
67]. In addition, co-occurrence of multiple kdr muta-
tions has been commonly associated with higher levels 
of phenotypic resistance to DDT and pyrethroids [68, 
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69]. Co-existing mutations of V1016G/S989P have been 
reported in Malaysia, Thailand and other Southeast Asia 
regions, and co-existing mutations of V1016G/F1534C 
were found in Singapore in Ae. aegypti populations [66, 
70, 71]. Vssc mutations can also confer cross-resistance 
between DDT and pyrethroids due to reduced sensitivity 
of the nervous system [72, 73]. It is remarkable that Vssc 
mutations have expanded greatly over the last three dec-
ades (Table 1) but that the specific mutations that confer 
the resistance have yet to be identified.

Synaptic AChE insensitivity
Acetylcholinesterase is the primary target of OP and 
carbamate insecticides which block the transmission of 
nerve impulses at cholinergic synapses. An understand-
ing of OP and carbamate resistance is demonstrated by 
the insensitivity of AChE subsequent to amino acid sub-
stitutions at the target gene, acetylcholinesterase 1/2 
(ace-1 or ace-2) [80, 81]. To date, only three amino acid 
substitutions have been described in different mosqui-
toes species: the substitution of glycine to serine at codon 
119, of phenylalanine to valine at codon 290 and of phe-
nylalanine to tryptophan at codon 331 [80–83] (Table 2). 
For example, the G119S mutation has been extensively 
studied in Culex pipiens and Anopheles gambiae, but 
the involvement of the ace gene on insensitive AChE 
in certain mosquito species, including Ae. aegypti and 

Anopheles stephensi, remains to be identified. G119S sub-
stitution results in steric hindrance, which reduces sub-
strate or inhibitor binding, whereas F290V and F331W 
both modify the stabilisation process [84]. The G119S 
mutation occurs in the oxyanion hole of acetylcholinest-
erase 1 which aids in substrates trafficking [84, 85]. The 
F290V mutation involves substrate specificity and the 
F331W mutation has been denoted as being involved in 
substrate guidance and binding [80, 86, 87].

GABA receptor resistance
The GABA receptor is encoded by the resistance to diel-
drin (RDL) gene involved in neuronal signalling [88]. 
The RDL receptor is a member of Cys-loop ligand-gated 
ion channel superfamily with a N-terminal extracellu-
lar domain for GABA binding. This receptor contains 
five subunits, with each subunit having an extracellular 
cysteine loop and four transmembrane domains (M1–
M4) [89]. RDL is the target of various insecticides, such 
as cyclodiene, fipronil and pyrethroids, where its func-
tion is influenced by the post-translational modifications 
[88, 90]. Several findings suggest that the complexity of 
RDL receptors is formed by alternative splicing at axons 3 
and 6 and RNA editing [91]. Here, adenosine residues are 
replaced with inosine in transmembrane segment M2 of 
RDL through the action of adenosine deaminases, result-
ing in the removal of the amine group and subsequently 
leading to formation of different isoforms. Studies by 

Fig. 4 Mechanism of insecticide resistance i.e. target site resistance (4.1), metabolic resistance (4.2), penetration resistance (4.3) and behavioural 
adaptation (4.4)
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Taylor-Wells et al. [88, 92] have documented the identifi-
cation of species-specific RNA A-to-I editing sites in the 
RDL of insecticide-resistant mosquitoes. For example, an 
alanine to serine or glycine substitution at position 296 
is found in Ae. aegypti [56] and Ae. albopictus [93]. This 
mutation does not affect insecticide sensitivity but it does 
reduce the fitness as a result of the A296G substitution 
which greatly impacts neuronal signalling [88].

Metabolic resistance
Resistant strains detoxify the toxins/insecticides much 
better than susceptible mosquitoes due to the overex-
pression of or conformation change in enzymes subse-
quent to point mutations in cis/trans loci of the enzymes 
[94]. Metabolic detoxification is usually associated with 
three major enzymatic activities, such as cytochrome 
P450 monooxygenases, esterases and glutathione 
S-transferases (GST) activity [56, 60, 95].

P450 monooxygenases
Cytochrome P450 (CYP) monooxygenases are one of 
the primary resistance mechanisms of pyrethroids in 

mosquitoes. CYP is a hydrophobic, heme-containing 
enzyme which metabolises a number of exogenous 
and endogenous compounds via oxidation in the pres-
ence of NADPH-CYP reductase (CPR) and occasion-
ally cytochrome b5 [56, 96]. Overexpression of CYPs or 
mutation at an open reading frame of CYPs have been 
reported in insecticide-resistant mosquitoes [97, 98]. 
The details of the molecular mechanisms are poorly 
characterised due to the presence of large number of 
CYPs. Table  3 summarises the known overexpressed 
CYPs and their associated insecticide resistance in Aedes 
mosquitoes. In Ae. aegypti, CYP6Z8 plays a pivotal role 
in pyrethroid clearance via carboxyesterase-mediated 
hydrolysis that generates 3-phenoxybenzyl alcohol 
(PBAlc) and 3-phenoxybenzaldehyde (PBAld), and finally 
3-phenoxybenzoic acid (PBAcid), all with lower toxicity 
to the mosquitoes as compared with intact pyrethroids 
[105, 108, 109].

Esterases
Esterase-mediated resistance to OPs, pyrethroids and 
carbamates have been studied extensively in Culex mos-
quitoes. Esterases act by rapid binding or slow turning, 
i.e. sequestration, to prevent the interactions between 
insecticides and AChEs [110]. Furthermore, increased 
production of esterases was reported to be closely related 
with amplification of the esterase alpha 2 genes [111, 
112]. Two genes, estα2 and estβ2, are involved in detoxi-
fying carboxylester hydrolase expression and esterase 
overproduction [113]. Both of them hydrolyse the ester 
bonds to produce alcohols and acids as metabolites via 
a two-step reaction which involves nucleophilic attack 
of the serine residue on the carbonyl carbon of the ester 
bond, followed by a second nucleophilic attack by water 
molecules to replace the acyl group, resulting in the 
release of the free active enzyme and acidic moiety of the 
carboxylic ester [114, 115]. These two loci are differen-
tially transcribed with average ratios of estβ2 over estα2 
at 10:1 and 15.9:1, respectively, in all resistant Culex mos-
quitoes [116]. Enhanced esterase activities in insecticide-
resistant Ae. aegypti has been reported but the genes 
involved are yet to be identified [117].

Glutathione S‑transferase activity
Glutathione S-transferases belong to a large and multi-
functional enzyme family participating in detoxification 
of xenobiotics, such as insecticides. They are classi-
fied into two ubiquitously distant classes: microsomal 
and cytosolic GSTs, respectively. Microsomal GST has 
a trimeric structure and its associated mechanism of 
insecticide resistance has yet to be elucidated. On the 
other hand, insect cytosolic GSTs are dimeric proteins 
comprising two subunits of 24–28 kDa each [56, 118]. 

Table 1 Knockdown resistance (Vssc) mutations that have been 
detected in different mosquito populations

Vssc Voltage-sensitive sodium channel

Mutation Transmembrane 
domain

Mosquito References

G923V II Aedes aegypti [61]

L982W II Ae. aegypti [61]

I1011M II Ae. aegypti [61]

I1011V II Ae. aegypti [74]

V410L I Ae. aegypti [75]

T1520I III Ae. aegypti [65]

S989P II Ae. aegypti [63]

F1534S III Ae. albopictus [76]

F1534L III Ae. albopictus [76]

F1534C III Ae. albopictus, Ae. aegypti [75, 77]

D1763Y IV Ae. aegypti [78]

V1016G II Ae. aegypti [63]

V1016I II Ae. aegypti [79]

Table 2 Acetylcholinesterase mutations observed in different 
mosquito populations

ace-1/ace-2 Acetylcholinesterase 1/2

Mutation Gene Mosquitos References

G119S ace-1 Culex pipiens, Culex vishnui, Anopheles 
gambiae and Anopheles albimanus

[80–82]

F290V ace-1 C. pipiens [83]

F331W ace-2 Culex tritaeniorhynchus [82]
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Another group of GSTs (kappa GSTs) are located in 
mammalian mitochondria and peroxisomes, but this 
class of GSTs is absent from insects [119, 120]. Hence, 
only cytosolic GSTs have been implicated in insecti-
cide resistance to date. A total of 26 GST genes have 
been reported in Ae. Aegypti, of which two can splice 
alternatively, which results in a total of 29 transcripts 
for cytosolic GSTs [121]. Mechanisms of GST-mediated 
insecticide resistance have been depicted as occurring 
either directly via the GST conjugation reaction (phase 
I) or via metabolism of secondary products by other 
detoxifying enzymes, such as P450 (phase II) [122]. 
In phase I metabolism, GSTs catalyse the nucleophilic 
attack of the thiol group of reduced glutathione located 
in the electrophilic centre of lipophilic compounds, 
including OPs and pyrethroids, causing increased 
water solubility and excretion by the cells [118, 122, 
123]. Another GST-based detoxification occurs when 
GSTs serve as a co-factor of dehydrochlorination by 
removing a hydrogen atom from its substrate [124]. 
This reaction has been implicated in resistance to DDT. 
In addition, certain GSTs confer resistance by passive 
binding or detoxifying lipid peroxidases and reactive 

oxygen species subsequent to the induction of oxidative 
stress [117, 119, 123, 124].

To date, there are at least six classes of GSTs in Ae. 
aegypti (theta, sigma, zeta, omega, delta and epsilon) 
[125]. GSTE2 in the Epsilon class is overexpressed in 
DDT-permethrin-resistant Ae. aegypti [126].

Penetration resistance
Penetration resistance occurs when barriers develop at 
the outer cuticle of mosquitoes, resulting in slow absorp-
tion of insecticides into their bodies. Likewise, resistant 
mosquitoes absorb toxins at a much slower rate than sus-
ceptible strains. Reduced penetration in turn provides 
more time for detoxification by facilitating the action of 
metabolic enzymes. Thus, this cuticular resistance is usu-
ally involved in cross-resistance to multiple insecticides 
due to their lipophilic property [127]. Overexpression of 
CYP enzymes, including CYP4G16 and CYP4G17, facili-
tates the deposition of cuticular hydrocarbons in the epi-
cuticle of the pyrethroid-resistant mosquitoes, such as 
Ae. aegypti [128, 129]. Hence, large amounts of cuticu-
lar hydrocarbons are formed and deposited on top of 
cuticle that function as a waterproofed layer conferring 

Table 3 Increased cytochrome P450 expression in various mosquito populations against insecticides

Mosquitos CYPs Stage Insecticide References

Ae. aegypti CYP4H28 Larvae Temephos [99]

Ae. aegypti CYP6AH1 Larvae Temephos [99]

Ae. aegypti CYP6CB1 Adults Permethrin [100]

Ae. aegypti CYP6F3 Larvae Permethrin [101]

Ae. aegypti CYP6M6 Larvae and adults Deltamethrin [102, 103]

Ae. aegypti CYP6M10 Larvae Permethrin [101]

Ae. aegypti CYP6M11 Larvae Permethrin, Temephos [102, 103]

Ae. aegypti CYP6N12 Temephos [104]

Ae. aegypti CYP6Z6 Larvae and adults Deltamethrin [102, 103]

Ae. aegypti CYP6Z8 Larvae and adults Deltamethrin, Temephos [99, 102, 103, 105]

Ae. aegypti CYP9J10 Adults Permethrin [100]

Ae. aegypti CYP9J19 Adults Permethrin [100]

Ae. aegypti CYP9J22 Larvae and adults Deltamethrin [102, 103]

Ae. aegypti CYP9J23 Larvae and adults Deltamethrin [102]

Ae. aegypti CYP9J24 Adults Permethrin [100, 106]

Ae. aegypti CYP9J26 Adults Permethrin [100, 106]

Ae. aegypti CYP9J27 Adults Permethrin [100]

Ae. aegypti CYP9J28 Adults Permethrin [101]

Ae. aegypti CYP9J32 Adults Deltamethrin, Permethrin [100, 106]

Ae. aegypti CYP12F6 Adults Permethrin [100]

Ae. aegypti CYP304C1 Adults Permethrin [100]

Ae. Albopictus CYP6AG6 Adults Deltamethrin, Permethrin [107]

Ae. albopictus CYP6N3 Adults Bendiocarb [107]

Ae. albopictus CYP6P12 Adults Deltamethrin, Permethrin [107]

Ae. albopictus CYP6Z6 Adults Deltamethrin, Permethrin [107]
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desiccation resistance. This mechanism on lipid transport 
and epicuticular deposition is the least understood of all 
the mechanisms described herein and should be further 
investigated to define its role in insecticide resistance.

Behavioural adaptation
Mosquitoes can reduce or prevent negative consequences 
of insecticides through adaptations. Behavioural resist-
ance is generally categorised into temporal, spatial and 
trophic avoidance whereby the mosquitoes escape from 
coming into contact with insecticides. The term ‘tem-
poral avoidance’ involves a mosquito reducing its risk of 
exposure by mismatch to the timing when insecticides 
are employed whereas ‘spatial avoidance’ involves the 
mosquitoes moving away from the insecticide-treated 
areas [130, 131]. Mosquitoes apply trophic avoidance by 
avoiding feeding on hosts in areas where insecticides are 
extensively used [130, 131]. Therefore, many research-
ers have hypothesised that behavioural changes may also 
be considered as a mechanism of resistance. In addition, 
behavioural tolerance evolves when mosquitoes that are 
unable to escape from the exposure develop tolerance 
through limiting their fitness loss. Mosquitoes can alter 
their behaviours by increasing their current reproductive 
effort, such as adjusting their egg production patterns, 
reducing their energy expenditure and maximising their 
nutrient uptake [132]. This proposed theoretical classifi-
cation of behavioural resistance is poorly deciphered and 
the fitness costs are yet to be quantified.

Prevalence of insecticide resistance in Southeast 
Asia
Various insecticides have been used worldwide for the 
control of the vector-borne diseases, including dengue. 
However, the effectiveness of this measure in controlling 
Aedes mosquitoes needs to be considered in light of the 
increasing trends of resistance towards different insec-
ticides at different geographical locations. Studies on 
insecticide resistance and its prevalence in Aedes mos-
quitoes may be limited or insufficient in certain South-
east Asian countries. The summary of the studies on the 
prevalence of insecticide resistance in all of the Southeast 
Asian countries included herein is provided in Additional 
file 1: Table S1.

Cambodia
Dengue fever is a major public health issue in Cambodia, 
with an estimated 185,000 cases in that country annually 
[133, 134]. The application of large amounts of insecti-
cides was initially effective in decreasing the number of 
dengue cases, but despite the little information currently 
available, the incidence of insecticide resistance can be 
seen to be increasing. In Cambodia, temephos is used to 

control larvae whereas deltamethrin and permethrin are 
used as adulticides. Recently, resistance of Cambodian 
Ae. aegypti populations to temephos has been appearing 
in Phnom Penh, Battambang and Kampong Cham, where 
the resistance ratios were reported to be 5.3, 33.6 and 
8.4 in urban areas and 5.3, 13.0 and 11.2 in rural areas, 
respectively (a ratio > 5 is an indication of resistance) 
[134, 135]. Fortunately, Ae. aegypti larvae remain suscep-
tible to temephos in both urban and rural areas in Siem 
Reap [133]. Boyer et al. [133] reported strong resistance 
to permethrin, with an average mortality rate of 2.22%, 
and a lower resistance to deltamethrin, with a mortal-
ity percentage of < 90%. The V1016G, S989 and C1534C 
mutations have also been detected in Cambodia in Ae. 
aegypti populations at a high frequency [136, 137].

Indonesia
In 2018, 65,602 cases of dengue fever were reported, 
of which 467 were fatal [29]. Low mortality rates of Ae. 
aegypti larvae (0–1.33%) were observed in several cities 
against malathion insecticide, possibly due to the mas-
sive use of malathion in fogging for past three decades 
[138]. Aedes aegypti larvae from Surabaya, Indonesia 
were reported to be resistant to temephos, with moderate 
mortality rates ranging from 16 to 60% [138, 139]. Knock-
down resistance against pyrethroid insecticides was asso-
ciated with V1023G and S996P mutations in Ae. aegypti 
larvae in Yogyakarta, and with the S989P and V1016G 
mutations in Denpasar, Bali [140, 141]. Adult Ae. aegypti 
that were resistant to pyrethroids carried Vssc gene muta-
tions. Three point mutations (V1016G, F1534C and 
S989P) were associated with pyrethroid resistance [137, 
142, 143]. Permethrin resistant Ae. aegypti from Makas-
sar, Sulawesi, Indonesia were associated with the V1016G 
mutation [144]. Ae. aegypti populations obtained from 
Padang Jati and Gunung Pangilun were resistant to 
temephos. A point mutation at ace-1 of these temephos-
resistant Ae. Aegypti strains collected from Padang did 
not have the G119S substitution, but instead had the 
T506T substitution, a silent mutation [145].

Other than target site resistance, the mechanism 
of action could also involve metabolic detoxification. 
Increased levels of detoxifying enzymes, such as GSTs, 
oxidases and esterases, play important roles in conferring 
resistance to DDT, malathion, temephos or pyrethroids 
in mosquitoes collected from Bogor, Garut, Sumedang, 
Tasikmalaya or Sumerang, Indonesia [146]. For example, 
exposure of Sumedang mosquito populations to perme-
thrin resulted in a 17-fold elevation of esterase activities 
and a fourfold elevation of mixed function oxidases [146]. 
These mosquitoes were significantly associated with the 
V1016G and S989P mutations [147]. Mosquitoes from 
Denpasar, Mataram, Kuningan, Padang, Samarinda and 
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Sumba Timur were resistant to d-allethrin, transfluthrin 
and metofluthrin of the mosquito coils [148]. Never-
theless, susceptible strains were detected in Pontianak, 
Dompu and Manggarai Barat [148].

Laos
Dengue is re-emerging in Laos, with several reported 
outbreaks between 2013 and 2017 in both rural and 
urban areas. The number of cases annually range from 
2000 to 20,000, of which approximately ten are fatal. OCs 
such as DDT were used for vector control and agriculture 
in Laos from the 1950s until they were banned in 1989. 
The larvicide temephos, an OP, was first used to treat 
water in containers during the dengue outbreak in 1987. 
Malathion was then introduced in the 1990s for thermal 
fogging, followed by the use of pyrethroids (deltamethrin 
and permethrin) from early 2000s onwards.

Tangena et  al. [149] reported that all Ae. albopictus 
collected from the capital city Vientiane and Luang Pra-
bang province were resistant to DDT (27–90% mortal-
ity) and malathion (20–86% mortality) and susceptible to 
deltamethrin and permethrin (100% mortality), with the 
exception of one population from Kao-gnot, Vientiane 
City which was suspected of being resistant to perme-
thrin (96% mortality). Ae. albopictus larvae were highly 
resistant to DDT (3–44%), and showed resistance to 
temephos in Luang Prabang (Huayhoy village, 74% mor-
tality) and Vientiane City (Suanmone and Oudomphon, 
42 and 87% mortality, respectively) [149].

Marcombe et  al. [150] investigated insecticide resist-
ance in Ae. aegypti populations collected from 11 vil-
lages located in five provinces in Laos to larvicides and 
adulticides used in Laos. All Ae. aegypti larvae collected 
showed moderate to strong resistance to temephos, del-
tamethrin, permethrin and DDT. Similarly, the adult 
mosquitoes collected from most of the villages were 
highly resistant to DDT, permethrin and malathion but 
susceptible to deltamethrin. All resistant adult mos-
quitoes showed significant elevated CYP monooxyge-
nases, GST and carboxylesterases. Two kdr mutations 
at V1016G and F1534C were detected in these popula-
tions, and a higher frequency of the F1543C kdr mutation 
(> 0.6) and low frequency of V1016G mutation (< 0.36) 
were found in resistant strains [150].

Marcombe et al. [151] conducted a simulated field trial 
of temephos, Bti, diflubenzuron, pyriproxyfen and spino-
sad using an established Ae. aegypti colony (IPL strain) 
obtained from wild, field-caught mosquito larvae col-
lected using ovitraps placed at the Institut Pasteur du 
Laos (IPL), Vientiane in Kao-gnot village. This wild IPL 
field strain was susceptible to Bti, diflubenzuron and 
pyriproxyfen (resistance ratio [RR] = 1) but showed mod-
erate resistance to temephos and spinosad (RR < 5). These 

results suggest that Bti, diflubenzuron and pyriproxyfen 
may be used as alternative larvicides for dengue vector 
control in water-storage containers in Laos at places with 
temephos-resistant mosquito populations.

Malaysia
As of 12 December 2020, a cumulative 88,074 dengue 
cases had been reported in Malaysia, which marks a 
drastic decrease compared with the 124,777 cases for the 
same period in 2019 [15]. Studies have been conducted 
in all 13 states to evaluate the status of insecticide resist-
ance in the dengue vectors and the associated resistance 
mechanisms. Rosilawati et al. [152] conducted a compre-
hensive study on 12 dengue hotspots across five states 
in Peninsular Malaysia and revealed that 75% of the col-
lected Ae. aegypti mosquitoes were resistant to perme-
thrin. In particular, Ae. aeygpti from Bandar Baru Bangi 
(S15) exhibited higher knockdown rate of 600-folds com-
pared with laboratory strains [152]. Rosilawati et al. [152] 
extended their study with another three dengue-endemic 
localities and characterised the resistance mechanisms 
in Ae. aegypti. All three field-collected strains exhibited 
strong resistance to pyrethroids with complete absence 
of mortality but were highly susceptible to OPs. Similarly, 
Ae. aegypti larvae collected in Selangor and Penang also 
showed same resistant patterns [153–155]. Other than 
pyrethroids, Ae. aegypti populations were also resistant 
to DDT and carbamate bendiocarb. Resistance profiles 
were associated with kdr mutations in Malaysian Ae. 
aeygpti populations. Most of these strains harboured the 
F1534C, V1016G and V1023G substitution alone or com-
bination mutations of V1023G and S996P [66, 153, 156].

On the other hand, Ae. albopictus populations, sec-
ondary vectors of dengue, were found to be mostly fully 
susceptible to pyrethroids, with Kuala Lumpur strains 
showing a moderate tolerance to deltamethrin and per-
methrin [66]. In that study, variation in the mortality 
rates of Ae. albopictus to DDT, bendiocarb, dieldrin and 
malathion in several states was reported and both Aedes 
species exhibited elevated levels of CYP and oxidase 
enzymes [66]. Ishak et al. [107] reported overexpression 
of CYP6P4 in Ae. albopictus and CYP6P12 in Ae. aegypti 
as being associated with pyrethroid resistance whereas 
CYP6N3 was observed across DDT- and carbamate-
resistant Ae. albopictus populations. Several CYP genes, 
including CYP9J27, CYP9J26, CYP9J28, CYP9M6 and 
CYP6CB1, were found to be overexpressed in pyrethroid-
resistant Ae. aegypti [157]. Overexpression of cuticular 
protein genes, which results in cuticle thickening, was 
associated with reduced penetration of pyrethroid in Ae. 
albopictus populations [107].

Research on insecticide resistance in East Malay-
sia is limited. Larvicide resistance in Ae. albopictus was 
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reported in Sabah, particularly on the West Coast and in 
Kudat were strong resistance to DDT and malathion with 
complete survival, and to tempehos and bromophos with 
mortality rates ranging from 0 to 93.33% were observed 
[158]. Adult Ae. albopictus populations were suscep-
tible to pyrethroids but displayed moderate resistance 
against the other three classes of insecticides in Sabah 
[159]. The prevalence of Ae. albopictus populations in 
Sabah could be explained by its geographical landscape 
of tropical rainforests, which is a favourable habitat for 
Ae. albopictus.

Myanmar
The Ministry of Health and Sports reported 4121 cases 
of dengue fever with 32 deaths across Myanmar as of 
11 July 2020 [26]. A small number of studies on the 
mechanisms of pyrethroid resistance in Ae. aegypti were 
reported in Myanmar. F1534C mutations were detected 
in permethrin-resistant Ae. aegypti in Yangon City [136]. 
Single point mutations of V1016G and S989P together 
with the co-occurrence of kdr mutations were observed 
in pyrethroid-resistant Ae. aegypti [160]. Three patterns 
of co-occurrence were observed, including V1016G/
F1534C, V1016G/S989P and V1016G/F1534C/S989P, at 
varying frequencies of 2.9, 65.7 and 0.98%, respectively 
[160]. A genotyping study also revealed the presence of 
the wildtype VV/FF, double homozygous alleles (GG/
CC), VG/CC and GG/FC derived from the F1534C and 
V1016G mutations in Yangon City [137]. DDT resistance, 
with less than 5% of mortality, was reported in Aedes 
mosquitoes collected at seven townships in Yangon City 
where 1.2 metric tons of DDT had been employed for 
dengue fever control until it was banned in 2003 [161].

Philippines
In the Philippines, 420,000 dengue cases were reported 
in 2019, of which 1565 were fatal, which is double the 
number of cases reported the previous year for the same 
period [15]. Aedes aegypti collected from Mandaluyong 
City were only susceptible to malathion but resistant to 
all other insecticides [162]. To date, there is no report on 
insecticide resistance for both larvae and adults of Aedes 
mosquitoes in Philippines.

Singapore
The National Environment Agency of Singapore dis-
closed a total of 701 dengue cases transmitted by Aedes 
mosquitoes as of 2 February 2021, which twofold lower 
than the number of cases during same period of the 
previous year [22]. Ae. aegypti mosquitoes in Singa-
pore were reported to be resistant to permethrin and 
cypermethrin decades ago [163]. Similar to other coun-
tries, DDT and pyrethroid resistance among Ae. aegypti 

larvae and adult mosquitoes has been reported in Sin-
gapore [164, 165]. Vssc mutations were detected in 
pyrethroid- and DDT-resistant Ae. aegypti carrying the 
V1016G, F1534C and F1269C substitutions [71, 128], 
with the G1016 alleles contributing more significantly 
to the target site insensitivity than the C1534 alleles 
[128]. A combination of V101G, S989P and F1534C 
mutations modified the sensitivity of Vssc channels to 
deltamethrin and permethrin by 90- and 1100-fold, 
respectively [166]. A correlation between CYP genes, 
i.e. overexpression of CYP6BB2, CYP9M6, CYP9M4, 
CYP9M5, CYP4C50, CYP6Z7, CYP6Z8 and CYP6F3, 
and permethrin resistance was detected [128]. Elevated 
esterase and GST levels may play an important role 
in pyrethroid and DDT resistance [164, 165]. F1534C 
alleles were detected in permethrin-resistant Ae. albop-
ictus [167]. An association between high levels of 
mixed function oxidase and permethrin resistance has 
also been detected in Ae. albopictus populations [163].

Thailand
Thailand reported 129,906 dengue cases in 2019 [17]. 
The susceptibility status and the resistance mechanisms 
of mosquitoes in Thailand are the most well-studied 
among the nations of Southeast Asia. In recent years, 
the tremendous use of all four classes of insecticides 
has resulted in an irreversible consequence, namely the 
development of insecticide-resistant mosquito strains, 
with Ae. aegypti populations in Thailand reported to 
be resistant to a wide range of insecticides, includ-
ing deltamethrin, permethrin, fenitrothion, temephos, 
propoxur, DDT, cyfluthrin and alpha-cypermethrin 
[67, 168–170]. The Vssc mutation is the major mecha-
nism of pyrethroid resistance, in which V1016G was 
detected to be associated with the S989P and F1534C 
substitution in the homozygous form [136, 166]. Addi-
tionally, triple heterozygous P989, G1016 and C1534 
mutants were detected in deltamethrin-resistant mos-
quitoes [137, 171]. Another mutation, F1552C, was 
also detected in permethrin-resistant strains in several 
provinces of Thailand, including Chiang Mai, Song Khla 
and Ubon Rachathanee [172]. Metabolic detoxifica-
tion was also found to be involved in insecticide resist-
ance with an increased expression of monooxygenases 
(CYP9J32, CYP6Z8, CYP9M9, CYP6AH1, CYP4H28), 
GSTs (GSTE2) and carboxylesterases (CCEAE3A, CCE-
AE4A and CCEAE6A) detected in resistant Ae. aegypti 
[99, 106, 173, 174]. Ae. albopictus samples collected 
from Pong Nom Ron showed high resistance to all five 
pyrethroids, with mortality rates ranging from 34.4 to 
68.6%. Rayong strains also showed resistant to perme-
thrin with a 51% mortality rate [175].



Page 13 of 19Gan et al. Parasites Vectors          (2021) 14:315  

Timor‑Leste
Timor-Leste reported 837 dengue cases in 2017, of which 
two were fatal [24]. Insecticide resistance resulting in 
ineffectiveness of dengue elimination was only reported 
once, in 2015. Ae. aegypti populations from Dili were 
found to be resistant to permethrin, lambda cyhalothrin 
and resmethrin in association with the overexpression of 
esterases [176].

Vietnam
Dengue infections have increased substantially in Viet-
nam with 121,398 reported cases and 19 deaths as of 
29 November 2020 (vs 314,468 cases and 54 deaths in 
2019) [15]. The resistance of Ae. aegypti to DDT and 
pyrethroids was first reported in 1999 [177]. kdr muta-
tions and overexpression of CYP enzymes in resistant Ae. 
aegypti populations were observed. Ae. aegypti resistant 
to permethrin has been reported in several provinces, 
including Nha Trang, Hanoi, Ho Chi Minh, Kien Giang, 
Dong Nai and Dak Lak, with mortality rates ranging from 
3.03 to 52.25% [178]. In addition, Ae. aegypti mosqui-
toes were found to be resistant to lambda-cypermethrin, 
cyfluthrin, etofenprox, DDT and alpha-cypermethrin 
[178, 179]. Several point mutations (V1016G, V1016I and 
F1269C) were detected [178, 180]. V1016G mutations 
were also detected in permethrin-resistant Ae. albopictus 
populations from Hanoi [167].

Brunei
To date, there is no or limited access to dengue data and 
resistance for Brunei.

Conclusions and future perspectives
Although insecticides were once effective in controlling 
mosquito-borne diseases, the increasing trends of mos-
quito-borne diseases may indicate an increasing resist-
ance to or ineffectiveness of insecticides in controlling 
the transmission of the diseases. Furthermore, insecti-
cides may also significantly influence the environment 
and ecosystems. It may be wise to revisit the concept of 
using chemical insecticides for controlling or eliminat-
ing mosquitoes and hence disease transmission. Long-
lasting insecticide nets (LLINs) and indoor residual 
spraying, the use of which has been implemented as 
public health intervention tools for mosquito control, 
now require more diversified products due to the over-
whelming development of insecticide resistance among 
mosquito populations. Biological control strategies 
which target different stages of the mosquito life-cycle, 
such as the use of numerous copepods, including Meso-
cyclops longisetus and M. thermocyclopoides which prey 
on the young mosquito instars, could be an alternative 

control strategy[181, 182]. In Vietnam, copepod bio-
control has been undertaken for decades to target Ae. 
aegypti but it is challenging to apply the copepods as 
most of the larval habitats are not favourable habitats 
for these copepods [183, 184]. Other mosquito preda-
tors, such as fish, water bugs and frogs, may play sig-
nificant roles in biocontrol in the future [185].

As biocontrol agents, entomopathogenic fungi, bacte-
ria and viruses have been developed to specifically kill 
mosquitoes. The most commonly used microorganism 
is Bti which destroys the gut of the mosquito larvae by 
producing δ-endotoxin [186]. Several studies have indi-
cated the lethal effect of entomopathogenic fungi, such 
as Metarhizium anisopliae, to adult mosquitoes [187]. 
The fungi sporulate to penetrate the cuticle of the mos-
quitoes, resulting in the death of mosquitoes by oblit-
eration of tissues as well as the toxins produced [188].

Another method includes the release of genetically 
modified mosquitoes that have been infected with Wol-
bachia sp., an endosymbiotic bacteria [189] and of 
sterile-male mosquitoes [190]. The cytoplasmic incom-
patibility induced by Wolbachia sp. causes sterility, 
thereby suppressing mosquito populations. The presence 
of Wolbachia strain, wMelPop, reduces the adult lifes-
pan via the inhibition of pathogen replication as well as 
the upregulation of immune genes [191, 192]. The ster-
ile insect technique (SIT) can also be manipulated via 
genetically engineered sterile male mosquitoes, such as 
OX513A (which carries a repressible dominant lethal 
transgene insertion that causes lethality at the late lar-
val or early pupal stages). These released sterile males 
subsequently mate with wild females, and the result-
ant offspring will die before adult metamorphosis which 
reduces their reproductive potential. Ultimately, field 
trials and further research on the sustainability and cost-
effectiveness of both approaches will be necessary.

In summary, the prevalence of dengue fever and 
increasing trend of resistance towards different cat-
egories of insecticides are alarming in many Southeast 
Asian countries. A well-researched understanding of 
the mechanism of resistance and susceptibility of the 
mosquitoes is of utmost importance for the develop-
ment of an effective control method of Aedes mosqui-
toes in these endemic regions.
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