
El Moustaid et al. Parasites Vectors          (2021) 14:382  
https://doi.org/10.1186/s13071-021-04826-y

RESEARCH

Predicting temperature‑dependent 
transmission suitability of bluetongue virus 
in livestock
Fadoua El Moustaid1,2, Zorian Thornton3,4,5,6, Hani Slamani3,4, Sadie J. Ryan7,8,9 and Leah R. Johnson1,2,3,4* 

Abstract 

The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vec-
tor–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases 
including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose 
etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy 
of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable 
temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a 
Bayesian approach. We incorporate these curves into S(T), a transmission suitability metric derived from the disease’s 
basic reproductive number, R0. This suitability metric encompasses all components that are known to be temper-
ature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides 
variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15◦ C and 34◦ C , 
with predicted peak transmission risk at 26 ◦ C. The greatest uncertainty in S(T) is associated with the following: the 
uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of 
becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector 
competence at the higher edge of the thermal range. We compare three model formulations and show that incor-
porating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling 
approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to 
assess risk and to anticipate potential locations of disease establishment.
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Background
With ongoing climate change, it is critical that we 
understand how temperature influences the dynam-
ics of emerging diseases. Vector-borne diseases (VBDs) 
are highly sensitive to climate factors, particularly tem-
perature, as demonstrated previously for VBDs of both 
humans and plants [1–5]. Bluetongue virus (BTV), in the 
Reoviridae family (genus Orbivirus), causes bluetongue 

disease in livestock across the world and is thus a VBD of 
considerable economic concern. The biting midges of the 
Culicoides family are responsible for transmitting BTV 
and many other arboviruses. More than 1400 species of 
Culicoides have been classified globally, but fewer than 30 
have been identified as competent vectors for BTV trans-
mission [6]. These midges are highly sensitive to changes 
in temperature [7, 8], and thus so is BTV transmission [9, 
10].

BTV can infect most species of domestic and wild 
ruminants, including sheep, goats, and cattle [11]. Sheep 
are the most susceptible to the disease and exhibit the 
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highest morbidity and mortality post-infection [12, 
13]. In the majority of infections by strains of BTV’s 27 
serotypes, animals rarely show any clinical signs [14]. 
The infection severity and the presence of clinical signs 
both depend on the serotype, and the severity of infec-
tion can range from rapid death to quick recovery. Com-
mon outward clinical signs include a blue tongue, fever, 
and excessive salivation [13]. Since clinical signs are rare, 
BTV infection often goes without detection. Unfortu-
nately, undetected cases can still result in mortality, and 
while BTV vaccines exist, vaccine development is in its 
infancy [15]. An effective polyvalent vaccine to immunize 
against more than one strain of BTV has yet to be devel-
oped [16], and existing attenuated viral vaccines pose 
significant health risks to livestock, such as reduced milk 
production in lactating sheep, abortion, early embryonic 
death, and teratogenesis in pregnant females [17].

In the absence of an effective polyvalent BTV vac-
cine, and with the potential risks and costs of the avail-
able vaccines, the impact of BTV on global agriculture 
is significant. For example, the cost of BTV in the US 
beef industry was estimated at $95 billion in 2014 [16]. 
Although BTV was first detected among merino wool 
sheep in South Africa in 1905, since then the disease has 
been found on every continent but Antarctica [18]. In 
recent years, the disease has spread to areas previously 
believed to not be at risk, including Northern and Cen-
tral Europe, parts of Asia, and Western North America 
[12, 19]. Mandatory testing of animals and losses in for-
eign markets impose a huge economic burden. This adds 
to the economic impact of BTV on the livestock indus-
try. Substantial improvement is needed in our ability to 
assess risks and to anticipate potential shifts in risk over 
time and space.

Though the cause of the recent appearance of BTV in 
some of the new regions (especially Northern Europe) 
is still unknown, it is believed that climate change is a 
major driver. More specifically, the increase in tempera-
ture of certain locations makes them suitable for midges 
to survive, and therefore transmit diseases [13].

For example, some cases of BTV-8 in Europe, specifi-
cally in France, have exceeded expectations of receding 
and survived cold winters [20].

Mathematical modeling can facilitate our understand-
ing of the complexities of the transmission process of 
vector-borne diseases [10, 21, 22]. The classical Ross–
MacDonald model of VBDs and similar models allow us 
to calculate the basic reproductive ratio R0 of the disease 
[23, 24]. This summary quantity is widely used to esti-
mate how infectious a disease is and whether an outbreak 
can occur. When R0 > 1 , the disease is likely to spread, 
leading to an outbreak; when R0 < 1 , the disease is likely 
to die out. As shown in Fig. 1, BTV transmission involves 

host–vector interactions, host–virus interactions, vec-
tor–virus interactions, and the effect of the environment. 
Mathematical models allow us to describe these inter-
actions, parameterize them with data, and quantify the 
knock-on effects for transmission risk.

Here we are interested in answering the following 
questions: (1) How does the risk of transmission of BTV 
vary with temperature? (2) Do different model assump-
tions lead to different predicted suitability ranges? and 
(3) Which traits contribute the most to variation in esti-
mates of transmission risk? To answer these questions, 
we take an approach used previously for VBDs such as 
malaria [1, 2]. We begin by using Bayesian inference to fit 
thermal responses to laboratory-derived data for temper-
ature-sensitive midge life-history traits. We then derive 
R0 for BTV as a function of these thermal responses and 
incorporate the fitted thermal responses to obtain esti-
mates of these across temperatures. To focus on just the 
temperature-dependent components, we define a suita-
bility metric, S(T), that isolates the temperature-sensitive 
components of R0 . We compare forms of S(T) where the 
midge density, V, is constant versus temperature-sensi-
tive to ascertain whether this generates major differences 
in suitability predictions. Next, we conduct uncertainty 
analyses to identify which parameters drive uncertainty 
in S(T). This can indicate that either further data collec-
tion is needed to refine estimates, or that certain param-
eters have greater impacts on BTV disease transmission 
at different temperatures. Finally, we visualize predic-
tions of the fitted suitability framework to explore which 
geographical areas might be suitable for transmission in 
the current native range of the midges, or if they become 
established elsewhere. Furthermore, understanding 

Fig. 1  Bluetongue virus interaction diagram: the mechanisms 
underlying the transmission of bluetongue virus include host–vector 
interactions, host–pathogen interactions, and vector–pathogen 
interactions, as well as the environmental effect on all interactions
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which temperature range results in S(T ) > 0 for given 
levels of other fixed parameters in our model may inform 
prevention and control strategies that target particu-
lar parameters (e.g., adult mortality rates via pesticide 
application).

Methods
Derivation of R0 and S(T)
To predict the outbreak potential of BTV, several 
forms of the basic reproductive number R0 have been 
developed [10, 21, 22]. The classical reproductive ratio 
for a generic VBD [1, 25] is given by

where V is midge population density; bc is vector com-
petence (the product of the probability that a midge can 
transmit the infection to an uninfected host, b, and the 
probability that a midge gets infected when biting an 
infected host, c); a is the per-midge biting rate; µ is the 
adult midge mortality rate; ν is the pathogen develop-
ment rate ( ν = 1/EIP with EIP the extrinsic incubation 
period); H is host density, and d is infected host recov-
ery rate. The model used to derive this version of R0 is 
a system of delay differential equations that assumes no 
exposed class and that susceptible midges move to the 
infected class shortly after contact with an infected host. 
A similar scenario can be described using a system of 

(1)R0 =

(
V bc a2

d H µ
e−µ/ν

)1/2

from [25]

ordinary differential equations while expressing the delay 
between the contact with the infected host and midges 
becoming infectious in terms of an exposed class. In this 
case, the reproductive number for the midge-borne viral 
disease (BTV) can be expressed as

This version of R0 is a reduced version of a model that 
uses multiple types of host and multiple types of midge 
species as in [10, 21].

Figure  2 shows a schematic representation of our 
BTV transmission model (Equations A.1–A.8  in 
Additional file  1: Appendix A.1) which considers a 
single host population split into susceptible individu-
als that are vulnerable to BTV disease (S), infected 
individuals that have acquired infection (I), and indi-
viduals who have recovered from the disease (R). 
Also, we consider a vector population containing 
susceptible midges ( Sv ), three levels of exposed indi-
viduals ( Ev ), and an infected class of midges ( Iv ). The 
exposed classes in the model represent the extrin-
sic incubation period that midges undergo before 
becoming able to transmit infection. To calculate the 
third version of the basic reproductive number R0 , 
we use a next-generation matrix method described in 
[26, 27], which leads to the following R0 equation:

(2)R0 =

(
V bc a2

d H µ

ν

ν + µ

)1/2

from [10]

Fig. 2  A schematic illustration of BTV transmission. The host population is composed of three classes: susceptible (S), infected (I), and recovered (R). 
The midge population is composed of a susceptible class ( Sv ), three exposed classes ( Ev ), and an infected class ( Iv ). Black arrows show movement 
between classes and red arrows indicate contact potentially leading to transmission
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The term 
(

3 ν

3 ν + µ

)3

 in R0 represents the number of 

midges that survive the extrinsic incubation period, lead-
ing to a slight difference between the three R0 forms.

We can represent all three formulas of R0 with a simple 
equation given by

where the expressions for V and g are the same for all 
three versions and are given by

where F is eggs per female per day, pE , pL , and pP are 
survival probabilities for eggs, larvae, and pupae; ρE , ρL , 
and ρP are development times for eggs, larvae, and pupae, 
respectively; µ is adult midge mortality, a is midge biting 
rate, and bc is midge competence.

Although R0 is a useful metric, particularly since the 
thresholding behavior can predict whether or not an epi-
demic can take hold, multiple factors, including the size 
of the susceptible population, whether or not parasites/
hosts/vectors are physically present in an area, socio-
economic factors (e.g., screens, household and working 
conditions), or control measures, can all impact R0 at a 
particular location. We want to focus our analysis strictly 
on the temperature components of the transmission, to 
be able to determine the temperatures that prohibit or 
promote transmission, and explore sensitivity to the ther-
mal traits independently of other factors. Thus, we define 
a transmission suitability metric, S(T), as the (standard-
ized) thermal components of R0 (Eq. 4), and given by

(3)R0 =

(

V bc a2

d H µ

(
3 ν

3 ν + µ

)3
)1/2

.

(4)R0 =

(
Vgf

d H µ

)1/2

(5)
=








(midge density)

g
� �� �

(transmission potential)

f
� �� �

(prob of becoming infectious)

(host recovery rate) (host density) (vector mortality)








1/2

(6)V =

F pE pL pP

µ2 (ρE + ρL + ρP)

(7)g = a2 bc

(8)
S(T ) = C

(
Vgf

µ

)1/2

= C

(
F pE pL pP a2 bc f

µ3 (ρE + ρL + ρP)

)1/2

,

,

where C is a constant that is chosen after the Bayesian fit-
ting of traits (see below) that scales the median suitabil-
ity to lie between 0 and 1. That is, we choose C to be the 
highest value of the posterior median suitability. When 
the median suitability is zero, this indicates that tempera-
tures do not permit transmission, and when the median 
suitability is 1, this indicates a maximal transmission, 
everything else being equal.

The difference between the three R0/S(T) formulas 
lies in the latent period survival probabilities, f, repre-
senting the probability of midges surviving to become 
infectious post-infection. Table  1 summarizes the latent 
period survival probabilities for each of the three models 

considered.
In Fig. 3, we plot all three latent period survival prob-

abilities with one parameter fixed as the other varies (e.g., 
with virus development rate, ν , fixed and midge mortality 
rate, µ , varying). We use all three forms in our analysis 
while comparing the constant vector density case V to 
temperature-sensitive density V(T).

Bayesian fitting of temperature‑sensitive traits
As ectotherms, midges are sensitive to temperature. The 
thermal performance for these temperature-dependent 
traits is generally hump-shaped, starting at zero at a 
given minimum temperature, then increasing to a peak 
value as temperature increases, then sharply dropping to 
a lower value at a maximum temperature [28, 29]. How-
ever, depending on how a trait is measured, the pattern 
may instead be concave up. For example, mortality rates 
exhibit this pattern, such that the mortality is lowest at 
intermediate temperatures.

Here, we collected trait data corresponding to two 
midge species from the family Culicoides, namely, Culi-
coides sonorensis and Culicoides variipennis, both found 

Table 1  Formulas for the probability of an infected midge 
(vector) surviving to become infectious, arising in R0 formulas 
from different models, and the parameters involved

Formula Traits used

f1 = e−µ ν [Dietz 1993] µ : adult mortality rate

f2 =
ν

ν + µ [Gubbins et. al. 2008 ]
ν : pathogen development rate

f3 =

(
3ν

3ν + µ

)3
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in the United States [30]. The data collection method 
consisted of synthesizing data from the published litera-
ture by assembling data from tables and digitizing data 
points from graphs; details on data used for fitting for 
each trait are provided in  Additional file 1: Appendix A.4 
and A.6. We focused on data from controlled laboratory 
experiments on midge trait variation at constant temper-
atures, ideally with three or more data points. For digiti-
zation, we used Plot Digitizer free software [31].

We used the temperature-dependent trait fits in all 
three R0/S(T) formulations for comparison. Following a 
method first introduced in [1], we fit unimodal curves to 
temperature-sensitive traits. For the unimodal curves, we 
chose between a Brière curve (Eq. 9) for left-skewed data 
or a quadratic formula (Eq. 10) for symmetric traits.

where the constants k, TMin , TMax , inter, n.slope, and qd 
are estimated from trait data. For more information on 
the prior and fitted values, see Additional file 1: Appen-
dix A.6

Similarly to [2], we used a Bayesian approach for our fit-
ting method. For each continuous positive trait, we chose 
a truncated normal distribution as our likelihood. When 
fitting probabilities/proportions, we instead either used a 
binomial likelihood (when raw count data was available) 
or used a normal likelihood truncated at zero and one if 
only summarized data were available. We chose priors for 
thermal performance curve (TPC) parameters to ensure 
that parameters had biologically reasonable sign and 
range.

(9)Brière: kT (T − TMin)
√

TMax − T

(10)Quadratic: inter − n.slope T + qd T 2

We used Markov chain Monte Carlo (MCMC) sam-
pling in JAGS/rjags to fit our models [32]. For each 
trait, we ran five MCMC chains with 5000-step burn-in 
followed by 25,000 samples. Of these we kept every fifth 
sample, to obtain 5000 thinned samples for subsequent 
analyses. We used these 5000 samples of each parameter 
to calculate the associated trait thermal curves, resulting 
in 5000 thermal fits of the trait data. After generating the 
5000 posterior mean curves for each trait, we used the 
5000 posterior curves to generate posterior curves for R0

/S(T). For all posteriors (i.e., of traits and S(T)), we sum-
marized posterior distributions using the temperature-
dependent medians and the corresponding 95% highest 
posterior density (HPD) interval, which is the smallest 
credible interval in which 95% of the distribution lies 
[33]. All analyses were implemented in R [34]. More 
details on likelihoods and priors used can be found in 
Additional file 1: Appendix A.6.

Uncertainty in S(T)
The S(T) formula (Eq.  8) depends on multiple tempera-
ture-sensitive traits, and so does its posterior density. 
Hence, there are many sources of uncertainty in the mean 
posterior density that can be identified through uncer-
tainty analysis. We sought to isolate the contributions of 
each component of the model to the overall uncertainty 
through a variation on a traditional sensitivity analysis.

We calculated the uncertainty associated with f, g,  and 
V by varying one while keeping the rest fixed at their 
posterior means. We calculated the width of the 95% 
credible interval around the mean posterior curve, i.e. 
the difference between the upper and lower quantiles 
when only one of the components is allowed to vary. 
We then divided this by the width of the interval when 

Fig. 3  (Left) Latent period survival probability f versus midge mortality rate µ with a fixed ν = mean(ν(T)) = 0.061 . (Right) Latent period survival 
probability f versus pathogen development rate ν with a fixed µ = mean(µ(T)) = 0.15
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all are allowed to vary. We repeated this process for each 
component f, g, and V, and then plotted all the curves 
together against temperature. This allowed us to iden-
tify which model component is responsible for the larg-
est proportions of uncertainty in S(T) by identifying the 
curve with the highest value at a given temperature.

Mapping suitability
The concern about climate-mediated increases and shifts 
in BTV risk is best visualized using mapping approaches, 
to understand where suitability is permitted and for how 
long, and how much livestock are thus at risk. Existing 
mapping approaches to this question largely focus on 
the European landscape, due to the recent uptick in BTV 
outbreaks. However, existing models purport to capture a 
general Culicoides spp. model but must rely on data from 
the UK vector Culicoides obsoletus mixed with other spe-
cies that may not be the dominant vector, or even cur-
rently present. In this study, we focus on the two US 
vectors for which there are data and project a global risk. 
We do this under the assumption that given the capacity 
for Culicoides to spread and establish—as demonstrated 
by the Afrotropical C. imicola invasion across South-
ern Europe in recent decades—there may well be simi-
lar invasions and establishment by the two well-studied 
US vectors, and thus specific models will provide useful 
planning tools.

To visualize and apply our understanding of the ther-
mal suitability of BTV, we mapped both suitability and 
risk at a global scale. First, we define suitable regions as 
those where the posterior median of the suitability metric 
S(T) >0. This is equivalent to finding the values where the 
posterior probability that S(T ) > 0 is 0.5. We note that 
here we use a scaled form of S(T) as described above. We 
present the geography of suitability across the globe by 
mapping the number of months of suitable temperatures 
for transmission based on the monthly average tempera-
tures from the WorldClim dataset [35]. We use these 
average monthly temperatures as a means to describe 
seasonality at a global scale with climate products that 
are comparable between baseline (current temperatures) 
and future scenarios, to lay the groundwork for future 
investigations. The WorldClim data provide a trade-off 
between a spatial and temporal resolution that facilitates 
conducting calculations of risk across the globe.

Second, we map livestock at risk of transmission using 
the latest Food and Agriculture Organization of the 
United Nations (FAO) Gridded Livestock of the World 
(GLW3) data for 2010, which details global distributions 
of sheep, goats, cows, and others, at a 5-minute scale 
[36]. To create a visually accessible risk map, suitability 
was scaled 0–1, and this was multiplied by log10 (1 + live-
stock). Thus we create a scaled risk map, balancing the 

season length and livestock density, to emphasize areas 
of coincidence rather than simple suitability. In this case, 
we used the GLW3 sheep distribution [37] as the primary 
host at risk. This gridded product has values ranging 
from 0 to >340,000 sheep per pixel. All map calculations 
and manipulations were run in R using packages ras-
ter [38, 39], maptools [40], and Rgdal [41], following 
methods described in [42, 43].

Results
Temperature‑dependence model components
Here we summarize the model components that depend 
on temperature and explain their role in the model.

Midge thermal traits
In Fig. 4 we show data and fitted curves for development 
times and survival probability for eggs, larvae, and pupae. 
Development times (Fig.  4 left) are fitted assuming a 
quadratic function, under the assumption that juvenile 
midges at a given stage will need more time to develop 
at very low (<20 ◦ C) and very high (>35 ◦ C) tempera-
tures. For eggs, the development time ranges from 60 
to 70 days; for larvae, from 15 to 35 days; and for pupae 
between 40 and 80 days. We fit the survival probabilities 
using a Brière curve (Fig. 4 right). The survival probabil-
ity is relatively high for eggs ( 0.2 < pE < 0.8 ), very low 
for larvae ( pL < 0.2 ), but almost always 100% for the 
pupae stage ( pP ∼ 1).

In Fig.  5a we show data on fecundity F (the number 
of eggs laid per female per day) together with the fitted 
Brière curve. The fecundity reaches a maximum at ∼ 30 
◦ C, and we do not have data for temperatures beyond 
that. The mortality rate, µ, is fit using a quadratic curve 
where we assume that the mortality is highest for tem-
perature less than 10 ◦ C and higher than 30 ◦ C (Fig. 5b).

In Fig.  6 we show the biting rate a and the transmis-
sion probability b, both fit with a Brière curve. The biting 
rate minimal values lie around 10 ◦ C, increasing to reach 
a maximum at 30 ◦ C, while the transmission probability 
b is lowest at around 15 ◦ C and reaches a maximum at 
30 ◦ C. We do not have data for the infection probability 
c, so we assume that it is equal to 0.5. Lastly, Fig. 7 shows 
the virus development rate fit using a Brière curve, with 
minimal values around 15 ◦ C and maximal values around 
32 ◦ C. Overall, these thermal traits all lack data values at 
extreme temperatures.

Midge density V
Recall the midge density formula given by

(11)V (T ) =
F(T ) pE(T ) pL(T ) pP(T )

µ(T )2 (ρE(T )+ ρL(T )+ ρP(T ))
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To estimate midge density V, we use the posterior sam-
ples of the survival probabilities pE , pL, pP , for egg, 
larvae, and pupae; the development times ρE , ρL, ρP cor-
responding to the egg, larvae, and pupae life stages; the 
fecundity measure represented by the number of eggs per 
female per day F; and the adult mortality rate µ. In Fig. 8 

we show that the posterior estimate of temperature-
dependent midge density V is highest between 20 ◦ C and 
28 ◦ C; it increases at temperatures higher than 10 ◦ C and 
decreases when the temperature exceeds 28 ◦C.

Fig. 4  Figures in the left panels show development time in days for midge juvenile stages, eggs ρE , larvae ρL , and pupae ρP . Figures in in the right 
panels show survival probabilities for midge juvenile stages, eggs pE , larvae pL , and pupae pP . The solid line is the mean of the posterior distributions 
of the thermal response curves, while the dashed lines represent the HPD intervals



Page 8 of 14El Moustaid et al. Parasites Vectors          (2021) 14:382 

Transmission potential
The component g, which we call the transmission poten-
tial, is estimated by calculating the product of midge bit-
ing rate a and vector competence bc:

a b

Fig. 5  a Fecundity F (eggs per female per day) and b adult mortality rate µ traits as they vary with temperature. The solid line is the mean of the 
posterior distributions of the thermal response curves, while the dashed lines represent the HPD intervals

a b

Fig. 6  Biting rate (a) and probability that midges transmit infection when biting an uninfected host (b). The solid line is the mean of the posterior 
distributions of the thermal response curves while the dashed lines represent the HPD intervals

Fig. 7  Virus development rate ( ν ) is the inverse of the extrinsic 
incubation period ( ν = 1/EIP ). The solid line is the mean of the 
posterior distributions of the thermal response curves, while the 
dashed lines represent the HPD intervals

Fig. 8  Modeled midge density as it varies with temperature. To 
obtain the temperature-dependent midge density, V(T), we evaluate 
Eq. 11 at all temperature-dependent traits using the fitted curves. 
The solid black line shows the estimated density, and the dashed 
lines show the corresponding HPD interval. A constant value V = 2 is 
shown for comparison for subsequent modeling where the density 
is constant
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Temperature-dependent data for transmission probabil-
ity c were unavailable. Thus we assumed that there will 
be a 50% chance for midges to become infected after bit-
ing an infected host ( c = 0.5 ) regardless of temperature. 
Figure 9 shows the posterior distribution of the predicted 
transmission potential thermal curve.

Functional form
We explored three functional forms of the formula 
used to represent the probability of midges surviving to 
become infectious (Table 1). In all three cases, we calcu-
late the thermal dependence of the functional form using 
the posterior distributions of mortality rate µ (Fig.  5b) 
and virus development rate ν (Fig.  7). Figure  10 shows 
the variation in the functional form with temperature 
based on the two temperature-dependent traits µ and ν . 
Although there are differences in the magnitude of these 
curves, we can see that their peak occurs at the same 
temperature (25 ◦C), which is due to the traits’ thermal 
dependencies. In addition, all of their HPD intervals 
overlap, which means that there are no significant differ-
ences between them.

Thermal suitability S(T)
We use thermal traits to evaluate S(T) given by Eq. 8 with 
constant midge density V (Fig. 11 top) and with tempera-
ture-dependent midge density V(T) (Fig. 11 bottom). The 
three models are slightly different when constant midge 
density is used but are in agreement when temperature-
dependent midge density is used. This is due to all the 
temperature-sensitive traits used to calculate V(T); how-
ever, this also leads to a higher uncertainty shown in the 

(12)g(T ) = b(T )c a2(T );

Fig. 9  The transmission potential g as the biting rate a and 
transmission probability b vary with temperature while the infection 
probability is constant c = 0.5 . The solid line shows the estimated 
curve, and dashed lines are the HPD interval

Fig. 10  Latent period survival probability f used in R0 versus 
temperature. The black line shows our model with the newly derived 
R0, the purple line shows the model presented in [10], and the blue 
line shows the model presented in [25]. Each solid line represents a 
different model, and the dashed lines show the corresponding HPD 
intervals. We note that there is an overlap between all HPD intervals, 
meaning that there are no statistically significant differences between 
these models

Fig. 11  (Top) S(T) with constant midge density V and (Bottom) S(T) 
with temperature-dependent midge density V(T). The plots shows 
the magnitude of S(T) changing as temperature increases. Each solid 
line represents the mean of the posterior distributions of R0 , while the 
dashed lines are the HPD intervals
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range of the HPD interval in Fig. 11 (bottom). The lower 
thermal bound of the three posterior means are different 
by a magnitude of 1 ◦ C. However, the peak temperature 
and upper thermal limits are in agreement for all three 
models. With these results, we predict that S(T ) > 0 
occurs at a temperature greater than 15 ◦ C and less than 
34 ◦ C, meaning that BTV is likely to cause an outbreak 
within this temperature range. We note that this predic-
tion is based on assuming c = 0.5 , which may not always 
be true in reality.

Source of uncertainty in S(T)
In Fig.  11 (bottom), a high variation around S(T) pos-
terior density is shown in the large HPD interval. To 
determine the source of this uncertainty, we plot the 
calculated relative widths for each S(T) component, see 
Fig. 12. The results show that at a low-temperature range 
(14  °C <T< 18  °C), uncertainty in S(T) is mainly due to 
the uncertainty in the functional form f. At intermedi-
ate temperatures ( 18 ◦C < T < 33 ◦C ), the uncertainty is 
caused by the midge density V(T). At very high tempera-
tures ( 33 ◦C < T < 35 ◦C ), the transmission potential g 
is the component producing the most variability in S(T).

BTV risk maps
Figure 13 illustrates the number of months each area is at 
risk of BTV transmission, with the assumption that Culi-
coides sonorensis and Culicoides variipennis are the main 
vectors. The results show that, under baseline long-term 
average current temperature conditions, much of Central 
Africa, South Asia, Central America, the northern part 
of South America, and northern Australia are suitable 
for year-round bluetongue transmission. These areas are 
also the warmest parts of the world, and as we move away 
from them, the temperature is lower and the number of 
months of suitability is reduced.

Next, we used the global distribution of sheep to deter-
mine areas where sheep are at risk of acquiring BTV. 
The choice of sheep was mainly due to ready data avail-
ability, and also because sheep are the BTV host with 
the highest mortality and morbidity rates, and therefore 

Fig. 12  The source of uncertainty in S(T) is measured by calculating 
the relative width of the 95% HPD quantiles, with each component 
varying with temperature while the remaining components are kept 
constant, and divided by the width when all are allowed to vary

Fig. 13  Map of the number of months (1–12) areas are at risk of bluetongue virus transmission according to our temperature-dependent R0 . This 
map is based on the current mean monthly temperatures and is restricted to bluetongue disease caused by the two midge species Culicoides 
sonorensis and Culicoides variipennis 
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of great interest and relevance. The map shows that 
areas where sheep are at the highest risk ( scale > 3 ) are 
located around the equator. The next highest risk regions 
( 1 < scale < 3 ) are areas with high livestock industry, 
such as Central and South America and Europe (Fig. 14).

Discussion
In this study, we are interested in the potential for the 
temperature to shape where BTV may spread. We use a 
Ross–Macdonald type modeling approach to describe the 
dynamics of BTV transmission [23, 24]. This mechanis-
tic approach allowed us to derive the basic reproduction 
ratio’s posterior distribution as a function of temperature. 
We were able to determine both the suitable temperature 
for possible BTV outbreaks when S(T ) > 0 and the tem-
peratures at which BTV outbreaks are likely to die out 
when S(T ) = 0. We note that the absolute magnitude of 
the thermal response of S(T) here is dependent on our 
model assumptions, for example setting the infection 
probability to be c = 0.5. We also adopt two previously 
used BTV models, [25] and [10], to compare the three 
forms of R0.

Based on the available trait data we used in our model, 
we predict that temperatures from 15 ◦ C to 34 ◦ C are 
“suitable” for BTV outbreaks by the examined midge spe-
cies, with peak suitability occurring at about 26 ◦ C. This 
result was obtained regardless of which S(T) formula was 
used, i.e., all three different models of the latent period 
survival probability, f, led to the same predictions. Simi-
larly, the predicted peak and upper thermal limit of S(T) 

were the same for the three forms, and only a small differ-
ence between lower thermal limits ( ∼ 1 ◦ C) was observed. 
This indicates that the uncertainty of temperature effects 
on traits outweighs the effects of differences in modeling 
assumptions in the form of the latent period survival 
probability for these models. Because our suitability met-
ric captures all of the temperature-dependent portions of 
R0 , this result should also hold for R0 more broadly.

Uncertainty in temperature-dependent traits of the 
vector–virus system results in uncertainty in the suit-
ability metric S(T). Our uncertainty analysis allowed us 
to determine the traits responsible for causing uncer-
tainty in S(T) (and therefore in the temperature-depend-
ent components of R0 ) across the temperature range. At 
lower temperatures ( 14 ◦C < T < 18 ◦C ) more data are 
needed for the parasite development rate, ν , and mor-
tality rate, µ , to reduce this uncertainty in the latent 
period survival probability, f. At moderate temperatures 
( 18 ◦C < T < 34 ◦C ), the uncertainty in S(T) is caused 
by V, meaning that more data are needed in traits con-
tributing to estimating the midge density. At very high 
temperatures ( 34 ◦C < T < 35 ◦C ) we need more data 
on vector competence bc and biting rate a. Reducing the 
uncertainty in these components of S(T) will allow refine-
ment of predictions, control, and prevention suggestions.

We were interested in using our derived suitability 
metric to determine areas at risk of BTV based pri-
marily on temperature suitability. A risk map can be a 
useful planning tool, both to understand the scale of 
current risk and to anticipate suitable regions where 
the establishment of BTV could be successful were 

Fig. 14  Scaled transmission risk suitability of bluetongue virus for sheep, as the primary host at risk, worldwide. The scale ranges from a low risk, 0, 
to a high risk, 5



Page 12 of 14El Moustaid et al. Parasites Vectors          (2021) 14:382 

it to be introduced, with competent vectors. We cre-
ated global risk maps showing the number of months 
per year each location worldwide is suitable for BTV 
disease transmission given the presence of two midge 
species, namely, Culicoides sonorensis and Culicoides 
variipennis. The results show that warmer areas are at 
risk year-round, while cooler areas are at risk for fewer 
months. Based on currently available data, few loca-
tions are predicted to have temperatures hot enough to 
exclude BTV for many months of the year. Further trait 
data to decrease the uncertainty near the thermal lim-
its would enable more precise and accurate predictions. 
However, the particular predictions are also based on 
long-term, baseline current temperatures. With climate 
change, and the continuous rise in global temperatures, 
the area at risk of BTV may expand and shift to include 
places with previously lower risk, or some year-round 
locations may become too hot for year-round transmis-
sion [44, 45].

In building our maps, we chose to use monthly mean 
temperatures, as this captures the mean response of the 
suitability determined mechanistically. Other approaches 
might be to use climate products with different tempo-
ral resolutions and express suitability in the number of 
days between thresholds, but these products tend to be 
available at much coarser spatial resolutions, making 
them less suitable for combining with livestock layers. 
Instinctively, one may want to use minimum or maxi-
mum temperatures to impose thresholds, but this faces 
a very biological conundrum of model mechanics—a 
minimum or maximum temperature may exist for a very 
small time period within a given month, and thus not 
represent a longer period experienced by the vector in 
question. The behavioral avoidance mechanisms vectors 
can use in short periods of extremes would be missed by 
this approach, leading to underestimates of the potential 
extent of suitability.

Previous studies have investigated temperatures suit-
able for other vector-borne diseases. For example, a study 
on three mosquito-borne diseases, Zika, dengue, and chi-
kungunya, transmitted by Aedes aegypti and Aedes albop-
ictus showed that transmission is likely to occur between 
18 and 34 ◦ C, with peak transmission between 26 and 29 
◦ C [43, 46, 47]. Moreover, the temperatures suitable for 
the transmission of the plant-borne disease, citrus green-
ing, are between 16 ◦ C and 33 ◦ C, with peak transmis-
sion at 25 ◦ C [48]. Together with our findings, this shows 
that there are similarities between ectotherm vectors in 
the way they respond to temperature. For example, their 
traits follow hump-shaped thermal performance curves. 
But there are differences in the temperature ranges 
they tolerate, and the temperatures at which their per-
formance is maximal. This points to the importance of 

building system-specific models for predicting the effect 
of extrinsic factors on the spread of VBDs.

As highlighted in a 2018 systematic review [49], 
BTV has been studied using many different modeling 
approaches. The systematic review summarized BTV 
models used post-1998 [49], most of which relied more 
on strong modeling assumptions than data. The model 
results were used to inform animal health decision-mak-
ing by identifying at-risk areas and the risk of spread in 
the case of introduction [50] and climate change [45]. 
While several examined R0 for BTV [10, 22], our model 
differs in that it incorporates temperature across a wide 
range, allowing us to estimate an R0 that is also tem-
perature-dependent. A more recent study used a math-
ematical quantity called vectorial capacity instead of 
R0 to estimate BTV transmission [51]. R0 and vectorial 
capacity are very similar, with the latter assuming perfect 
competence and ignoring host recovery rates (making 
our suitability metric somewhere in between). The study 
identifies the optimal transmission suitability range for C. 
sonorensis to be between 27 and 30 ◦ C, which overlaps 
with our transmission peak range of 26 and 29 ◦ C. The 
difference is likely due to our study including trait data 
for two Culicoides spp. as well as including temperature-
dependent infection parameters. Overall, the two models 
are in agreement regarding the effects of gross tempera-
ture patterns on BTV transmission.

In addition, while data on Culicoides spp.  temper-
ature-dependent traits are scarce, we had the luxury of 
obtaining sufficient data to create a model for two North 
American vectors, and did not mix traits across species 
from different continents. This is of particular inter-
est in assessing the potential for invasion and estab-
lishment (and hence spread) of disease vectors, which 
has been found to be almost a hallmark of Culicoides 
spp.  across the European landscape in recent decades, 
leading to novel outbreaks of BTV. Linking R0 or S(T) to 
temperature can help identify BTV outbreak risk based 
on the temperature at particular locations, which in turn 
can inform management policies and control strate-
gies within current and changing climate conditions. By 
establishing a model specific to current vectors in the 
United States, we can assess the potential for invasion 
and spread to other parts of the globe.
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