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Temporal transcriptomic changes in long 
non-coding RNAs and messenger RNAs involved 
in the host immune and metabolic response 
during Toxoplasma gondii lytic cycle
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Abstract 

Background: Long non‑coding RNAs (lncRNAs) are important regulators of various biological and pathological 
processes, in particular the inflammatory response by modulating the transcriptional control of inflammatory genes. 
However, the role of lncRNAs in regulating the immune and inflammatory responses during infection with the proto‑
zoan parasite Toxoplasma gondii remains largely unknown.

Methods: We performed a longitudinal RNA sequencing analysis of human foreskin fibroblast (HFF) cells infected 
by T. gondii to identify differentially expressed long non‑coding RNAs (lncRNAs) and messenger RNAs (mRNAs), and 
dysregulated pathways over the course of T. gondii lytic cycle. The transcriptome data were validated by qRT‑PCR.

Results: RNA sequencing revealed significant transcriptional changes in the infected HFFs. A total of 697, 1234, 1499, 
873, 1466, 561, 676 and 716 differentially expressed lncRNAs (DElncRNAs), and 636, 1266, 1843, 2303, 3022, 1757, 3088 
and 2531 differentially expressed mRNAs (DEmRNAs) were identified at 1.5, 3, 6, 9, 12, 24, 36 and 48 h post‑infection, 
respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 
DElncRNAs and DEmRNAs revealed that T. gondii infection altered the expression of genes involved in the regulation 
of host immune response (e.g., cytokine–cytokine receptor interaction), receptor signaling (e.g., NOD‑like receptor 
signaling pathway), disease (e.g., Alzheimer’s disease), and metabolism (e.g., fatty acid degradation).

Conclusions: These results provide novel information for further research on the role of lncRNAs in immune regula‑
tion of T. gondii infection.
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Background
Toxoplasma gondii is an obligate intracellular para-
site which can infect many warm-blooded animals 
and is widespread in the human population [1, 2]. 
Human infection occurs mainly via ingestion of food 
or water contaminated with T. gondii oocysts or cysts, 
respectively [3]. Infected people with a compromised 
immune system can experience severe symptoms, such 
as headache, seizures or even death [4]. Unfortunately, 
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there is no effective human vaccine to prevent infec-
tion, and drugs used to treat infected individuals have 
limitations [1, 2].

Toxoplasma gondii divides by endodyogeny inside an 
intracellular parasitophorous vacuole (PV) [5]. When 
the number of tachyzoites within the PV reaches a cer-
tain level, the tachyzoites egress from infected cells and 
infect new host cells in a process known as the lytic 
cycle [6]. Following host cell invasion, the proliferating 
tachyzoites of T. gondii establish an acute infection. In 
response to the pressure conferred by the host immune 
response, tachyzoites differentiate to slowly replicate 
bradyzoites and establish a lifelong latent infection, 
which can be reactivated in immunodeficient hosts [7]. 
The interaction of T. gondii with the host cells occurs 
at the transcriptional and post-transcriptional levels, 
which is fundamental for establishing a lytic or latent 
infection, but the molecular mechanisms that mediate 
these interactions remain poorly understood.

Several approaches, including transcriptomics [8–
10], proteomics [11–13], and metabolomics [14], have 
been used to reveal the mechanisms that mediate the 
interaction between T. gondii and the host cell. Long 
non-coding RNAs (lncRNAs) have recently received 
increased attention because they play vital roles in cell 
development [15], chromatin modification [16], and 
immune regulation [17]. Changes in lncRNA expres-
sion have been associated with developmental defects 
[18], tumorigenesis [19], and autoimmune diseases 
[20]. There are a few studies on the expression of lncR-
NAs and their role in infectious diseases, such as those 
caused by viruses [21, 22]. Interestingly, deregulation 
of the expression of 996 lncRNAs and 109 messenger 
RNAs (mRNAs) has been demonstrated in human fore-
skin fibroblast (HFF) cells infected by T. gondii by using 
microarray analysis [23].

In the present study, we used RNA sequencing to 
obtain greater insight into the temporal changes in the 
expression of lncRNAs and mRNAs during the lytic cycle 
of T. gondii infection in HFF cells.

Methods
Parasites and cell culture
The HFF cells, purchased from the American Type Cul-
ture Collection (ATCC), were cultured in Dulbecco’s 
modified Eagle medium (DMEM) supplemented with 
15% (vol/vol) fetal bovine serum (FBS), 100 U/ml peni-
cillin, and 100 µg/ml streptomycin. The cell culture was 
maintained at 37 °C and 5%  CO2. The RH (Type I) strain 
used in the present study was maintained in HFF cells as 
described previously [24].

Sample collection, RNA extraction, and RNA sequencing 
(RNA‑seq)
The HFF cells were infected with 10 ×  106 freshly egressed 
tachyzoites using a multiplicity of infection (MOI) of 1 (1 
tachyzoite to 1 HFF cell). After 1.5 h, the culture medium 
was removed and replaced with fresh DMEM. The cul-
tured cells were further incubated at 37 °C with 5%  CO2. 
Then, infected cell samples were collected at 1.5, 3, 6, 9, 
12, 24, 36 and 48  h post-infection (hpi) with T. gondii. 
Mock-infected cells were collected at 0 h. The experiment 
was carried out three times. The collected cell samples 
were stored at −80 °C until use for RNA extraction. Total 
RNA was extracted using TRIzol (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s instructions. 
The quantity and quality of the extracted RNA were 
determined by using the NanoDrop spectrophotometer 
and Agilent 2100 Bioanalyzer (Thermo Fisher Scientific, 
MA, USA), respectively. Samples with an RNA integrity 
number (RIN) ≥ 8.0 were used for RNA sequencing. The 
construction of sequencing libraries and sequencing were 
performed at Beijing Genomics Institute in Shenzhen 
using the BGISE500 platform.

Data processing and differential expression analysis
The raw sequencing data were analyzed using SOAPnuke 
(v1.5.2) [25] to obtain high-quality reads. HISAT2 was 
then used to map the clean reads to the reference genome 
[26], followed by the application of Bowtie 2 (V2.2.5) [27] 
to align the clean reads to the gene set. A novel, coding 
and non-coding transcript database built by BGI (Beijing 
Genomic Institute in Shenzhen). RSEM (v1.2.12) was 
used to calculate gene expression levels [28], and differ-
ential expression analysis was performed using DESeq2 
(v1.4.5) with Q value ≤ 0.05 [29].

Function prediction of the differentially expressed lnRNAs
Gene Ontology (GO) (http:// www. geneo ntolo gy. org/) 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (http:// www. genome. jp/ kegg/) enrichment 
analysis of the annotated host genes corresponding to 
differentially expressed lnRNAs (DElncRNAs) and DEm-
RNAs were performed by Phyper (https:// en. wikip edia. 
org/ wike/ Hyper geome tric_ distr ibuti on) based on the 
hypergeometric test. The significance of the enriched 
GO terms and KEGG pathways was corrected by Q value 
with a threshold (Q value ≤ 0.05) using the Bonferroni 
method [30].

Quantitative real‑time PCR analysis
Validation of the differential expression of lnRNAs and 
mRNAs identified by RNA-seq was performed by using 
quantitative real-time PCR (qRT-PCR) analysis of eight 
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randomly selected RNA samples. qRT-PCR was per-
formed using the SYBR assay according to the manufac-
turer’s instructions in a total of 20  µl reaction volume, 
containing 1 µl of each primer, 2 µl cDNA, 6 µl nuclease-
free  H2O, and 10  µl master mix (Takara, Japan). Three 
replicates were performed for each gene, and the glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) gene 
was used as an internal control. The level of gene expres-
sion was performed by using the  2−∆∆CT method. The 
primers used in the study (Table 1) were designed accord-
ing to the sequences available in the NCBI database and 
synthesized at Sangon Biotech (Shanghai, China).

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 7 software (GraphPad Software, Inc., San Diego, 
CA, USA) and a value of P < 0.05 was considered statisti-
cally significant.

Results
Identification of DElncRNAs and DEmRNAs
To characterize the dynamic expression and function of 
lncRNA and mRNAs in the lytic cycle of T. gondii, HFFs 
were collected for transcriptome analysis at 0, 1.5, 3, 
6, 9, 12, 24, 36 and 48 hpi. Q value < 0.05 and |log2 fold 
change|> 1 were used as thresholds to identify differen-
tially expressed genes (DEGs). The number and hierarchi-
cal clustering of DElncRNAs (Fig. 1a, c) and DEmRNAs 
(Fig. 1b, d) in infected cells at different time points com-
pared with the sample at 0  h (control) are shown in 
Fig.  1. The DE-lncRNAs were clustered into three dis-
tinct groups as shown in the dendrogram on the top of 
the heatmap (Fig. 1c), indicating differences in the tran-
scriptional profiles between the early (0 h, 1.5 h, and 3 h), 
middle (6 h, 9 h, and 12 h) and late (24 h, 36 h, and 48 h) 
stages of infection. Principal component analysis (PCA) 
of all identified lncRNAs (Additional file 1: Fig. S1a) and 
mRNAs (Additional file  1: Fig. S1b) further verified the 

reproducibility of these results. The volcano plots of 
DElncRNAs (Additional file  2: Fig. S2) and DEmRNAs 
(Additional file  3: Fig. S3) in infected cells at different 
time points compared with the sample at 0 h (control) are 
shown in Additional file 2: Fig. S2 and Additional file 3: 
Fig. S3. Our analysis identified 7,722 differently expressed 
lncRNAs (DElncRNAs), of which 697, 1,234, 1,499, 
873, 1,466, 561, 676, and 716 lncRNAs were differently 
expressed at 1.5, 3, 6, 9, 12, 24, 36 and 48 hpi, respec-
tively (Additional file 4: Table S1). A total of 16,446 dif-
ferently expressed mRNAs (DEmRNAs) were identified; 
of which 636, 1,266, 1,843, 2,303, 3,022, 1,757, 3,088, and 
2,531 were differentially expressed at 1.5, 3, 6, 9, 12, 24, 
36 and 48 hpi, respectively (Additional file  5: Table  S2). 
In addition, a total of 262 DElncRNAs (Additional file 6: 
Table S3) and 554 DEmRNAs (Additional file 7: Table S4) 
were co-expressed at all time points. The results of the 
RNA-seq were validated by analyzing the expression 
of four mRNAs (IL-11, IL-32, CCL2, and HOXA10) and 
four lncRNAs (LINC00941, LUCAT1, Loc107985080, and 
Loc101927226) at five time points (6, 12, 24, 36 and 48 
hpi) using qRT-PCR. The qRT-PCR results showed that 
the expression profiles obtained by qRT-PCR analysis are 
consistent with the results of RNA-seq (Fig. 2), demon-
strating the correctness of the RNA-seq data.

The gene targets of DElncRNAs
To identify the biological functions of DElncRNAs, GO 
enrichment analysis was performed using the gene tar-
get of DElncRNAs. The top 20 most-enriched GO terms 
in the biological processes are shown in Fig. 3. The bio-
logical processes of DElncRNAs at different groups were 
mainly involved in DNA recombination (GO:0006310), 
reverse transcription involved in RNA-mediated trans-
position (GO:0032199), transcription, DNA-templated 
(GO:0006351), and nucleic acid phosphodiester bond 
hydrolysis (GO:0090305) (Fig.  3). The top 20 most-
enriched KEGG pathways of DElncRNAs are shown in 

Table 1 The qRT‑PCR primers used in the study

a The GAPDH gene was used for mRNA and lncRNA normalization

Target gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL-11 CAG CGG ACA GGG AAG GGT TAAAG AGG CTC AGC ACG ACC AGG AC

IL-32 TGT GCT TCC CGA AGG TCC TCTC TCT GCC AGG CTC GAC ATC ACC 

CCL2 AGG AAC CGA GAG GCT GAG ACT AAC GGG AAT GAA GGT GGC TGC TAT GAG 

HOXA10 TCC CAC ACT CGC CAT CTC CTG AAC CAG CAC CAA GCA AAC ACA AAG 

Loc101927226 CAT TAC CTG CGT CAC CTC CAC AAG TGT CAC TGC TCC TCA TCC TCCTG 

Loc107985080 GAG AAG CAG GGC AGG AAT GTGAC CAG GCA GAA CCG AAG GAA GGC 

LUCAT1 GCA GCA CTC AAC TTG TAT TCA CTC AC TGT TCA CCA CTG TAC CCT CTA CCC 

LINC00941 CTA GGA GAG GGA GGG CAG AAG AAA G TTG CTG TGA GCC AGG ACC ATA TTA AG

GAPDHa CAC CAC ACC TTC TAC AAC TCT GGG TCA TCT TCT CAC 
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Fig.  4. Most of the DElncRNAs, including CLMAT3, 
TARID, and CARMN, were involved in autophagy and 
mitophagy at different times. In addition, DElncRNAs 
were involved in immune-related pathways, such as the 
TNF signaling pathway (e.g., CFLAR-AS1, CEBPB-AS1, 
and LOC100130476), and the nuclear factor kappa B 
(NF-κB) signaling pathway (e.g., C10orf55, CFLAR-AS1, 
and LOC646626), and were significantly enriched at 
1.5, 3 and 6 hpi. However, the metabolism-related path-
ways, such as fatty acid degradation (e.g., CHKB-DT) 
and tryptophan metabolism (e.g., TMEM161B-AS1, 
LOC101929352 and LOC105376957) were enriched 
at other time points after infection. The upregulated 
and downregulated lncRNAs were mainly involved in 

autophagy and mitophagy (Additional file 8: Fig. S4 and 
Additional file 9: Fig. S5).

Functional analysis of the DEmRNAs
The top 20 most-enriched biological processes are shown 
in Fig.  5. The biological processes of DEmRNAs at dif-
ferent time points were mainly involved in immune- or 
inflammation-related GO terms, such as the immune 
response (GO:0002376), inflammatory response 
(GO:0006954), defense response to virus (GO:0051607) 
and cytokine-mediated signaling pathway (GO:0019221). 
The top 20 most-enriched pathways of DEmRNAs are 
shown in Fig.  6. Most of the DEmRNAs were involved 
in immune-related pathways, such as cytokine-cytokine 

Fig. 1 Differentially expressed (DE) lncRNAs (a) and mRNAs (b), and hierarchical clustering heatmaps of the DElncRNAs (c) and DEmRNAs (d) 
detected in HFF cells at different time points after T. gondii infection. The x‑axis shows the time points after T. gondii infection and the y‑axis shows 
the number of DElncRNAs and DEmRNAs. Red and green represent the upregulated and downregulated DElncRNAs and DEmRNAs, respectively
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Fig. 2 qRT‑PCR‑based validation of the expression of representative DElncRNAs (LINC00941, LUCAT1, Loc107985080 and Loc101927226) and 
DEmRNAs (IL-11, IL-32, CCL2 and HOXA107). The x‑axis shows the names of the selected RNAs and the time points after infection. The y‑axis 
shows the relative expression levels. The GADPH gene was used for mRNA and lncRNA normalization. qRT–PCR data are mean of three 
replicates ± standard deviation. Results obtained by RNA‑seq analysis and qRT–PCR produced similar gene expression patterns
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receptor interaction (e.g., IL6, CXCL10 and CSF2), IL-17 
signaling pathway (e.g., CCL2, NFKB1 and FOSL1), TNF 
signaling pathway (e.g., MAP3K8, IRF1 and ICAM1), and 
NOD-like receptor signaling pathway (e.g., GBP1, GBP2 
and IFNAR2). The upregulated mRNAs were mainly 
involved in immune-related pathways (Additional file 10: 
Fig. S6), and the downregulated mRNAs were mainly 
involved in metabolism-related pathways and neurode-
generative diseases-related pathways, such as Alzheimer’s 
disease and Huntington’s disease (Additional file 11: Fig. 
S7).

Functional analysis of the gene targets of the co‑expressed 
DElncRNAs
GO analysis and KEGG pathway enrichment were per-
formed at different time points to identify the function 
of host genes corresponding to the DElncRNAs. The 
top 20 most-enriched biological processes are shown in 
Fig. 7a. They were mainly involved in reverse transcrip-
tion linked to RNA-mediated transposition (e.g., EGOT, 

LYRM4-AS1 and SLCO4A1-AS1), nucleic acid phospho-
diester bond hydrolysis (e.g., LYRM4-AS1, MSC-AS1 and 
GNG12-AS1), and DNA recombination (e.g., PLCE1-
AS1, ZNF667-AS1 and LYRM4-AS1). The top 20 most-
enriched pathways of DElncRNAs are shown in Fig. 7b. 
Most of DElncRNAs were involved in autophagy and 
mitophagy (e.g., LINC00173, LUCAT1 and ITGB1-DT).

Functional analysis of the co‑expressed DEmRNAs
The top 20 most-enriched biological processes are 
shown in Fig.  8a. The biological processes of DEm-
RNAs were mainly involved in immune-related GO 
terms, such as the immune system process (e.g., IFI30, 
TRIM13, and DHX36), defense response to virus (e.g., 
TRIM22, IFIT5, and IFI6), and inflammatory response 
(e.g., NLRP3, IFI16, and IL-6). The top 20 most-
enriched pathways of DEmRNAs are shown in Fig. 8b. 
Most DEmRNAs were involved in immune-related 
pathways such as cytokine-cytokine receptor inter-
action (e.g., CSF1, CXCL1, and IL1A), TNF signaling 

Fig. 3 GO enrichment analysis of the target genes of the DElncRNAs in HFF cells at different time points after T. gondii infection. a–h The top 20 
most‑enriched GO terms in the biological process at 1.5, 3, 6, 9, 12, 24, 36 and 48 hpi, respectively. The y‑axis represents the significantly enriched 
GO terms and the x‑axis denotes the pathway enrichment and the number of DEmRNAs
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(e.g., FAS, IRF1, and CXCL3), and NOD-like receptor 
signaling (e.g., GBP4, NAMPT and BIRC2).

Competing endogenous RNA (ceRNA) networks 
of lncRNAs‑mRNAs
To reveal the correlations between DElncRNAs and 
DEmRNAs, the ceRNA network was constructed using 
Cytoscape v3.6.0 (2015), based on the potential tar-
get relationship between DElncRNAs and DEmRNAs. 
One lncRNA was associated with one or more mRNAs 
(Fig. 9).

As shown in Fig.  9, lncRNAs can interact with 
innate immune-related mRNAs and apoptotic-related 
mRNAs; for example, HOXA10-AS can interact with 
MAVS, STAT1, IL10 and BCL2L1. However, the under-
lying regulatory mechanisms of these DEmRNAs and 
DElncRNAs need to be elucidated in further studies.

Discussion
The progressive proliferation of T. gondii tachyzoites in 
the host tissue causes acute infection, disrupting physi-
ological homeostasis and resulting in clinical manifesta-
tions such as fever and encephalitis [31]. Understanding 
how the expression of cellular lncRNAs and mRNAs 
is altered during T. gondii infection can provide new 
insight into the mechanisms underlying the early stages 
of the interaction between T. gondii and its host. In this 
study, a total of 7722 DElncRNAs and 16,446 DEmRNAs 
were identified, and DElncRNAs were mainly involved 
in immuno-inflammation and metabolism. These results 
suggest that lnRNAs play a significant role in the patho-
genesis of T. gondii infection.

Previous studies using transcriptome sequencing 
detected many DEGs in T. gondii-infected animal models 
[31–33]. These DEGs were mainly involved in immune 
regulation. The host implements a variety of measures to 
counter T. gondii infection. For example, IFN-inducible 

Fig. 4 KEGG pathway analysis of the target genes of the DElncRNAs in HFF cells at different time points after T. gondii infection. a–h Scatterplots 
show the top 20 pathways at 1.5, 3, 6, 9, 12, 24, 36 and 48 hpi, respectively. The x‑axis denotes the pathway enrichment. The y‑axis represents the 
names of the significantly enriched pathways. The P‑values are indicated by variations from blue to red, with darker blue denoting more significant 
difference
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GTPase families, including GBP1, GBP2, GBP3, GBP5, 
and GBP7, play roles in controlling T. gondii infection by 
regulating IFN-γ-mediated Irgb6-dependent cell-medi-
ated immunity [34]. In the present study, we found that 
several genes associated with IFN-γ signaling were over-
expressed during T. gondii infection, including GBP1, 
GBP2, GBP3, and GBP5. We also found that several genes 
(e.g., TLR3, STAT1, DHX58, IRF7, and Myd88) involved 
in the Toll-like receptor signaling pathway, NOD-like 
receptor signaling pathway, and RIG-I-like receptor sign-
aling pathway were upregulated during T. gondii infection 
(Fig.  6). In addition, inflammation-related genes includ-
ing NLRP3, IFI16, IL6, IL1A, CXCL2, and CCL6 were 
upregulated, further confirming that infection by T. gon-
dii induces a robust immune response to limit infection.

Recent studies have revealed that pathogen inva-
sion can alter the host lnRNA expression, which seems 
to help pathogens evade the host immune response [35, 
36] or enhance the host innate immune response [37]. In 
the present study, GO and KEGG analysis revealed that 

many of the DElncRNAs play a role in immune regula-
tion (Fig.  4). Toxoplasma gondii can inactivate human 
plasmacytoid dendritic cells by functional mimicry of IL-
10 [38], and lncRNA TMC3-AS1 can negatively regulate 
the expression of IL-10 [39]. In the present study, lncRNA 
TMC3-AS1 was downregulated. The deletion of lncRNA 
LUCAT1 in myeloid cells increases the expression of 
type I interferon-stimulated genes in response to LPS, 
and overexpression of LUCAT1 reduces inducible ISG 
response via their interaction with STAT1 in the nucleus 
[40]. In the present study, the expression of LUCAT1 was 
upregulated. Previous studies showed that MAVS plays 
a role in inducing an innate immune response and many 
viruses employ various strategies to suppress its activity 
[41–43]. In the present study, T. gondii downregulated 
the expression of MAVS in infected cells. These findings 
indicate that T. gondii infection can manipulate the host’s 
immune response by altering the expression of host 
lncRNAs (e.g., LUCAT1 and MAVS); however, the exact 

Fig. 5 GO enrichment analysis of the DEmRNAs in HFF cells at different time points after T. gondii infection. a–h Scatterplots show the top 20 
most‑enriched GO terms in the biological process at 1.5, 3, 6, 9, 12, 24, 36 and 48 hpi, respectively. The y‑axis represents the significantly enriched 
GO terms and the x‑axis denotes the pathway enrichment and the number of DEmRNAs
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Fig. 6 KEGG pathway analysis of the DEmRNAs in HFF cells at different time points after T. gondii infection. a–h Scatterplots show the top 20 
pathways at 1.5, 3, 6, 9, 12, 24, 36 and 48 hpi, respectively. The x‑axis denotes the pathway enrichment. The y‑axis represents the names of the 
significantly enriched pathways. The P‑values are indicated by variations from blue to red, with darker blue denoting more significant difference

Fig. 7 GO enrichment and KEGG pathway analyses of the target genes of co‑expressed DElncRNAs in HFF cells after T. gondii infection. Scatterplots 
show a the 20 most‑enriched GO terms in the biological process of target genes of DElncRNAs and b the top 20 pathways of the target genes of 
DElncRNAs. The x‑axis denotes the pathway enrichment. The y‑axis represents the names of the significantly enriched GO terms and pathways. The 
P‑values are indicated by variations from blue to red, with darker blue denoting more significant difference
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Fig. 8 GO enrichment and KEGG pathway analysis of the co‑expressed DEmRNAs in HFF cells after T. gondii infection. Scatterplots show a the 
20 most‑enriched GO terms in the biological process of DEmRNAs and b the top 20 pathways of DElncRNAs. The x‑axis denotes the pathway 
enrichment. The y‑axis represents the names of the significantly enriched GO terms and pathways. The P‑values are indicated by variations from 
blue to red, with darker blue denoting more significant difference

Fig. 9 The competing endogenous RNA (ceRNA) networks of lncRNAs and mRNAs. Red and green represent upregulated and downregulated 
genes, respectively. Gray represents both upregulated and downregulated genes at different times post‑infection



Page 11 of 13Wang et al. Parasites & Vectors           (2022) 15:22  

functions of these lncRNAs during T. gondii infection 
remain to be elucidated.

Latent T. gondii infection has been associated with 
various psychiatric disorders in humans [44, 45]. How-
ever, the mechanism underlying this connection remains 
a subject of further investigation [12]. In the present 
study, T. gondii infection increased the expression of 
genes associated with Alzheimer’s disease, Parkinson’s 
disease, and Toxoplasmosis, and genes that play a role 
in the neurotransmitter release cycle and transmission 
across chemical synapses. Alterations in solute carrier 
family genes, such as SLC2A6, SLC1A5, and SLC22A4, 
have been implicated in the impairment of the synap-
tic transmission, which seems relevant to the pathology 
of schizophrenia [46]. Other studies have revealed that 
altered expression of DRD1, which was downregulated in 
the present study, may contribute to the pathophysiology 
of schizophrenia and affective disorders [47].

Recent studies have enriched our understanding of the 
metabolism of both T. gondii and its host cells [14, 48, 
49]. In the present study, we have shown that T. gondii 
infection changes the host cell’s metabolism by altering 
the expression of mRNAs and lncRNAs involved in car-
bon metabolism, metabolic pathways, fatty acid degrada-
tion, biosynthesis of secondary metabolites, and pyruvate 
metabolism (Figs.  4, 6). The tricarboxylic acid (TCA) 
cycle is essential for T. gondii growth [48]. In the absence 
of glucose, T. gondii can utilize the gluconeogenic 
enzyme fructose bisphosphatase 2 to provide carbon for 
gluconeogenesis [49, 50]. In the present study, the down-
regulated lnRNAs were mainly involved in metabolism-
related pathways (Additional file  3: Fig. S3), indicating 
that lncRNAs play a role in regulating host metabolism 
during T. gondii infection.

Conclusions
Our data revealed significant changes in lncRNA and 
mRNA expression in HFF cells following T. gondii infec-
tion. The identified DElncRNAs and DEmRNAs were 
mainly involved in metabolism, signal transduction, and 
immune responses. Further investigation of these DEl-
ncRNAs and DEmRNAs is warranted to reveal the exact 
role of these transcripts in the pathophysiology of T. gon-
dii infection.
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