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Abstract 

Mosquito vectors of eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) in the USA reside within broad 
multi-species assemblages that vary in spatial and temporal composition, relative abundances and vector compe-
tence. These variations impact the risk of pathogen transmission and the operational management of these species 
by local public health vector control districts. However, most models of mosquito vector dynamics focus on single 
species and do not account for co-occurrence probabilities between mosquito species pairs across environmental 
gradients. In this investigation, we use for the first time conditional Markov Random Fields (CRF) to evaluate spatial 
co-occurrence patterns between host-seeking mosquito vectors of EEEV and WNV around sampling sites in Manatee 
County, Florida. Specifically, we aimed to: (i) quantify correlations between mosquito vector species and other mos-
quito species; (ii) quantify correlations between mosquito vectors and landscape and climate variables; and (iii) inves-
tigate whether the strength of correlations between species pairs are conditional on landscape or climate variables. 
We hypothesized that either mosquito species pairs co-occur in patterns driven by the landscape and/or climate vari-
ables, or these vector species pairs are unconditionally dependent on each other regardless of the environmental vari-
ables. Our results indicated that landscape and bioclimatic covariates did not substantially improve the overall model 
performance and that the log abundances of the majority of WNV and EEEV vector species were positively dependent 
on other vector and non-vector mosquito species, unconditionally. Only five individual mosquito vectors were weakly 
dependent on environmental variables with one exception, Culiseta melanura, the primary vector for EEEV, which 
showed a strong correlation with woody wetland, precipitation seasonality and average temperature of driest quarter. 
Our analyses showed that majority of the studied mosquito species’ abundance and distribution are insignificantly 
better predicted by the biotic correlations than by environmental variables. Additionally, these mosquito vector spe-
cies may be habitat generalists, as indicated by the unconditional correlation matrices between species pairs, which 
could have confounded our analysis, but also indicated that the approach could be operationalized to leverage spe-
cies co-occurrences as indicators of vector abundances in unsampled areas, or under scenarios where environmental 
variables are not informative.
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Background
Mosquito vector-borne pathogens such as eastern equine 
encephalitis virus (EEEV) and West Nile virus (WNV) 
are maintained and proliferate in the natural environ-
ment via a complex set of requirements and interactions 
with their hosts, underlying environmental variables 
and interactions with other organisms [1]. Both of these 
disease pathogens are autochthonously transmitted in 
the USA since their introduction in the 1990s and pose 
a continuous and consistent threat, particularly where 
multiple mosquito vectors are found. Although the inher-
ent complexity of EEEV and WNV transmission systems 
is recognized broadly within community ecology [2], the-
oretical frameworks specific to disease ecology focus pri-
marily on the biodiversity of vertebrate hosts and place 
much less emphasis on the biodiversity of insect vector 
species when considering arbovirus transmission dynam-
ics [3–5]. However, mosquito vectors of these two patho-
gens reside within broader multi-species assemblages 
that vary in composition, abundances and vector com-
petency to transmit EEEV and WNV, which can collec-
tively impact pathogen transmission in a geographic area 
[6–10]. In Florida, the EEEV and WNV risk is a compos-
ite distributed across multiple species of the competent 
bridge and main mosquito vectors that may be sympat-
ric but vary in abundance, diversity and vector compe-
tence [11–15]. More than 60 mosquito control districts 
(MCDs) conduct routine surveillance for these vector 
species to guide specific vector control efforts in Florida 
[16]. Unfortunately, vector control capabilities are limited 
and need to be carefully targeted toward the spatial and 
temporal distribution of mosquito vectors to be effective. 
Importantly, vector control techniques vary depending 
on the target mosquito species, which adds to the com-
plexity of designing effective control programs against 
mosquito vectors of EEEV and WNV.

While range-wide distributions of single species are 
now routinely estimated using ecological niche models 
[17, 18], the distribution and abundance of species at 
local scales are likely to involve both meso- and micro-
scale landscape features and the potential for interactions 
with other species that form the mosquito community. 
This complexity requires a different set of underlying 
data and analytical toolkits that can estimate both land-
scape factors and factors that promote or impede com-
munity co-occurrence. Due to challenges from both the 
data and analytical sides, work examining these factors 
in a single framework has remained piecemeal at best, 

with studies often focusing on just a subset of species and 
their possible interactions [17, 19, 20] or on larval distri-
butions [21], not those of adults. However, virus trans-
mission occurs in the adult life-stage of mosquitoes, thus 
investigating co-occurrence patterns of adult mosquitoes 
is essential for understanding transmission risk across 
geographic areas. Further, adult mosquito trapping data 
are collected routinely by MCDs, providing a means to 
scale-up analysis broadly.

A key challenge in predicting local-scale species dis-
tributions and community composition is accounting 
for covariance between species and the environment. 
Generalized additive models (GAMS) have been used 
to explore relationships between abundances of poten-
tial competitors in mosquito assemblages and a vegeta-
tion gradient [22], while other methods have focused on 
pairwise probability calculations between individual spe-
cies [23–25], with some similarities across methods [26]. 
When considering landscape-scale co-occurrence, a par-
ticularly powerful and yet unused approach for mosqui-
toes is to first quantify correlations between species pairs 
and then determine whether the strength of these corre-
lations is conditional on environmental variables using a 
conditional Markov Random Fields (CRF) analysis [25]. 
This approach simultaneously considers both biotic and 
abiotic factors that may be controlling the shape of spe-
cies abundances, distributions and community composi-
tion across environmental gradients in space.

In this study, we leverage the capability of longitu-
dinal collection data for mosquito communities, with 
the main emphasis on vectors of EEEV and WNV from 
Manatee County, Florida over the 2020 sampling season 
(May–December) to: (i) quantify correlations between 
host-seeking mosquito vector species of WNV and EEEV 
and other mosquito species, vectors and non-vectors; 
(ii) quantify correlations between host-seeking mosquito 
vectors and landscape and climate variables within their 
flying ranges; and (iii) investigate whether the strength 
of correlations between species pairs are conditional on 
landscape or climate variables using CRF analyses.

We hypothesized that species composition and abun-
dances of WNV- and EEEV-competent mosquito species 
are most likely determined by co-occurrences between 
species pairs in specific landscape and/or climate fea-
tures; that is, landscape features generally important for 
modifying species co-occurrence. Alternately, it may be 
that most vector mosquitoes are habitat generalists and 
generally co-occur regardless of landscape. The end goal 



Page 3 of 12Sallam et al. Parasites & Vectors           (2023) 16:10  

of using this approach is to better understand the joint 
effects of landscape and other mosquito species drivers 
on mosquito diversity/density and provide data-driven 
information for more comprehensive management and 
control strategies.

Methods
Study area and mosquito collections
Georeferenced 2020 mosquito trap data collected by 
Manatee County Mosquito Control District (MCMCD), 
Florida, were acquired from the VectorBase Bioinfor-
matics Resource for Invertebrate Vectors of Human 
Pathogens repository (https:// vecto rbase. org; 2021). 
The MCMCD 2020 data resulted from collections using 
US Centers for Disease Control and Prevention (CDC) 
 CO2-baited light traps set at 56 locations at weekly 
intervals from approximately May to December (Fig. 1). 
Although some trap and attractant biases exist, CDC 
 CO2-baited light traps collect diverse mosquito species in 
Florida [27]. This was demonstrated by the mosquito spe-
cies that were consistently collected in the 2020 MCMCD 
data set representing flood water, salt marsh and con-
tainer-inhabiting mosquito communities. Light traps 
were set for approximately 12 h before sunset until dawn, 
and mosquito collections were identified to species by 
trained mosquito control personnel using the Darsie and 
Ward (2005) taxonomic key [28]. Species counts for each 
sampling week were recorded and formatted in Microsoft 

Excel (Microsoft Corp., Redmond, WA, USA) spread-
sheets prior to submission to the VectorBase platform 
[29]. The mean number of mosquitoes per trap night per 
species was calculated at each trap site across 28 weeks 
during the 2020 sampling season, and a ‘site-by-species’ 
matrix was created with individual trap locations occu-
pying rows and individual species occupying columns in 
preparation for analyses (Additional file 1: Data file S1).

Vector‑competent mosquito species
Laboratory-confirmed vector competency of mosquito 
vector species for EEEV and WNV were identified from 
the scientific literature (Table 1), based on the collected 
mosquito species from the MCMCD. The field-con-
firmed mosquito vectors of EEEV and WNV were also 
identified from previous studies and denoted as puta-
tive vector species in our study. We only included 17 
WNV- and EEEV-competent vector species in our results 
and discussion. Other non-vector mosquito species are 
included in Additional file 2: Table S1.

Environmental data
US Geological Survey (USGS) Conterminous United 
States Land Cover Projections 1992–2100 were extracted 
for 2020 [47] and served as land cover data in our analy-
ses. These data have a 250-m spatial resolution and con-
sist of annual land cover classifications. We focused on 
four major land cover classifications found in Manatee 

Fig. 1 Study area with mosquito trap surveillance sites (filled squares) and investigated land cover classes in Manatee County, Florida, USA. CDC, US 
Centers for Disease Control and Prevention

https://vectorbase.org
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County as representative of different levels of anthro-
pogenic disturbance across the study area: developed, 
cropland, woody wetland and herbaceous wetland [48]. 
We quantified and extracted area percentages of each 
land cover type within both 5-km and 10-km buffers sur-
rounding each mosquito trap location using the ‘land-
scape metrics’ package in R [49, 50].

Bioclimatic variables within buffer sets surround-
ing each trap site from 2020 daily ‘Parameter-elevation 

Regressions on Independent Slopes Model’ (PRISM) Cli-
mate Group data [51] were extracted at an 800-m spatial 
resolution using the ‘dismo’ package in R [52]. PRISM 
data were accessed from https:// prism. orego nstate. edu/. 
To reduce the number of variables in our model, five bio-
climatic variables were selected for analyses: Bio2 (mean 
diurnal temperature range), Bio5 (the maximum temper-
ature of the warmest month), Bio9 (mean temperature of 
the driest quarter), Bio15 (precipitation seasonality) and 

Table 1 Unconditional correlations between laboratory-confirmed and two putative West Nile virus and eastern equine encephalitis 
virus vectors and other mosquito species within 5-km buffer distances

P Putative vector
a References for vector competency studies
b West Nile virus (WNV) vectors
c Eastern equine encephalitis virus (EEEV) vectors
d WNV and EEEV vectors

Vector species  namea Co-occurring species Relative 
importance

5% quantile Mean coefficient 95% quantile

Aedes aegyptib [30] Mansonia titillansb,p [31] 0.320 − 0.044 − 0.044 − 0.044

Aedes albopictus [30, 32] Uranotaenia lowiib,p [31] 0.512 0.145 0.145 0.145

Psorophora ferox 0.488 0.141 0.141 0.141

Aedes atlanticusc [33, 34] Aedes infirmatusc 0.944 0.459 0.459 0.459

Aedes infirmatusc [35–39] Uranotaenia lowiib,p 0.019 0.076 0.076 0.076

Psorophora ferox 0.096 0.169 0.169 0.169

Anopheles cruciansb 0.151 0.212 0.212 0.212

Aedes fulvus pallensb 0.996 − 0.059 − 0.059 − 0.059

Aedes taeniorhynchusb [30] Culex iolambdis 0.057 0.106 0.108 0.110

Aedes atlanticusb 0.019 − 0.066 –0.062 − 0.059

Aedes vexans sensu  latod [30, 40] Aedes infirmatusc 0.070 0.042 0.047 0.120

Culex nigripalpus 0.545 0.131 0.132 0.157

Anopheles cruciansb [41, 42] Culex erraticusc 0.613 0.391 0.391 0.391

Aedes infirmatusc 0.182 0.212 0.212 0.212

Culex nigripalpusb [43] 0.077 0.138 0.138 0.138

Anopheles quadrimaculatusc 0.549 0.127 0.127 0.127

Manosonia titillans 0.041 0.100 0.100 0.100

Anopheles quadrimaculatusc [43] Culex erraticus [44] 0.166 0.070 0.070 0.070

Coquillettidia perturbansd [38, 43] 0.124 0.060 0.060 0.0060

Culex. nigripalpusb 0.113 0.058 0.058 0.058

Urranotaenia lowiib,p 0.043 0.035 0.035 0.035

Coquillettidia perturbansd [38, 43] Manosonia dyarii 0.470 0.170 0.170 0.170

Culex erraticusc 0.163 0.100 0.100 0.100

Anopheles quadrimaculatusc 0.060 0.060 0.060 0.060

Culex coronatorb [45] Psorophora ferox 0.593 0.177 0.177 0.177

Culex. erraticusc [44] Masonia titillansb,p 0.116 0.171 0.171 0.171

Culex nigripalpusb [43] Psorophora columbiae 0.175 0.146 0.146 0.147

Anopheles cruciansb 0.155 0.138 0.138 0.138

Culex erraticusc 0.443 0.232 0.232 0.232

Aedes vexans s.d 0.142 0.131 0.132 0.157

Culex quinquefasciatusb [43] Culex coronatorb 0.381 0.129 0.129 0.129

Culex restuansb [46] Culex quinquefasciatusb [43] 1 0.164 0.164 0.164

https://prism.oregonstate.edu/
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Bio17 (precipitation of the driest quarter), based on mos-
quito biology and ecological data reported in previous 
studies [18, 21, 53]. Bioclimatic variables were all scaled 
to range between 0 and 1 in preparation for modeling 
given the widely different units in the raw data.

Statistical analyses
We used CRFs executed in the ‘MRFcov’ (Markov Ran-
dom Fields with additional covariates)package in R [25] 
to quantify whether the abundances of each WNV and 
EEEV mosquito vector species were (i) unconditionally 
dependent on another mosquito species in the assem-
blage and (ii) unconditionally dependent on a landscape 
or bioclimatic variable; and whether (iii) the strength 
level of dependence between species pairs was condi-
tional on a landscape and/or bioclimatic variable or (iv) 
there were no correlations between species pairs nor 
between individual species and environmental variables. 
[25]. Accordingly, the unconditional correlations were 
estimated using the generated regression correlation 
matrices generated by the MRF and CRF analyses which 
refers to consistent correlation between either species 
pairs, or between individual vector species and envi-
ronmental variables, with and without covariates using 
MRF and CRF analyses. Unlikely conditional correlations 
are: (i) correlation between species pairs only at specific 
habitats or climate which did not show unconditional 
correlations; (ii) correlations between single species and 
landscape and/or climate variables; or (iii) increased 
correlation strength between species pairs at specific 
habitats or climate in addition to their unconditional cor-
relations, such as the correlation between Coquillettidia 
perturbans and Mansonia dyarii indicated by the gener-
ated regression correlation matrices (Tables 1, 3).

To prepare data for analysis, we rounded the mean 
mosquito per trap night value within our ‘site-by-species’ 
matrix to an integer value to serve as nodes (mosquito 
species) and added additional columns with percentage 
landscape and average bioclimatic variables to serve as 
the conditional variables in the model. To calculate CRF 
using abundance data, the ‘MRFcov’ package log-trans-
forms species counts before performing pairwise linear 
regressions across all combinations of species and envi-
ronmental variables, using an optimized regularization 
multiplier for variable selection and to reduce overfitting; 
predicted and observed values for all species combina-
tions are then used in model evaluation [25]. Geographic 
coordinates at each mosquito trap location were included 
to fit a spatial spline to account for residual spatial auto-
correlation that can inflate parameter estimates resulting 
in Type I errors [54]. Bootstrap spatial models analyses 
using 500 replicates and 100% of sampling points with 
random replacement in each replicate were used to 

capture uncertainty in parameter estimates [25], and key 
regression coefficients of each species were output to a 
single table showing the relative importance of each vari-
able with a threshold value of > 0.01 and mean coefficient 
values (Additional file 1: Data file S1). The relative impor-
tance values indicate the relative strength of a variable on 
the log abundance of a vector species out of all variable 
combinations calculated for the species, while the sign of 
the mean coefficient values shows the direction of these 
correlations. Two separate models were run within each 
of the 5-km and 10-km buffer distances from each trap 
location: one model with and one model without envi-
ronmental variables.

Results
Manatee County, Florida, is located on the western coast 
of the Florida Peninsula on the Gulf of Mexico (Fig.  1). 
Along the coast, the area is primarily covered by devel-
oped land, while the inland extent of the county is pre-
dominantly rural and consists of agricultural land 
interspersed with wetlands [47]. The region is charac-
terized by a humid subtropical climate [55] with aver-
age annual maximum temperatures in the range of 27 °C 
to 29  °C and average annual minimum temperatures in 
the range of 15  °C to 17  °C (Florida Climate Prediction 
Center [CPC] prediction maps CCPM 2022) [056]. The 
average annual precipitation ranges from around 1250 
to 1400 mm [57], with most of it falling during the rainy 
season, which typically lasts from May to October.

A total of 2,009,985 adult female mosquitoes repre-
senting 30 species and eight genera were collected across 
56 trap sites during the 2020 mosquito trap surveillance 
sampling from May to December. Initial exploration 
of mosquito abundances by genera across the trap sites 
indicated variability in the abundance of mosquito genera 
across these sites. Culex was the dominant genus found 
across these sites; however, approximately 14% of sites 
were dominated by Aedes mosquitoes (Fig. 2).

Statistical tests
Box plots for bootstrapped models with no covariates 
(MRF) and with covariates (CRF) measured within 5-km 
and 10-km buffer distances indicated that the inclusion of 
landscape and bioclimatic variables did not substantially 
improve the overall model performance when evaluated 
by deviance (DV) or mean squared error (MSE) values 
(Fig. 3; Additional file 1: Figure S1). The insignificant dif-
ferences in DV and MSE values reflect that the change 
in number and strength of correlations between species 
pairs, as indicated by relative importance values, did not 
change the overall spatial correlations between mosquito 
species pairs. This insignificant small change in correla-
tions between species pairs without (Fig.  4) and with 
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environmental variables (Fig. 4), as demonstrated in net-
work plots, showed that the number and direction of cor-
relations between individual species pairs were slightly 
impacted by the environmental variables included in the 
model. The plot shown in Fig. 4b demonstrates correla-
tions between species pairs that were not affected by the 
inclusion of environmental variables and correlations 
between species pairs where the strength of correlation 

varies with the inclusion of an environmental variable. 
The reduced number of species pairs in the plot shown 
in Fig.  4b compared to that shown in Fig.  4a indicated 
that several species pairs were highly correlated when no 
environmental variables were included in the model but 
that these correlations reduced to zero when environ-
mental variables were added. 

Model regression correlation matrices included key 
coefficient tables that summarized the relative impor-
tance of correlations between log abundances of species 
pairs or between the log abundance of an individual vec-
tor species and environmental variables (i.e. uncondi-
tional correlations with another species measured within 
5-km and 10-km buffer distances), or conditional corre-
lations between species pairs where the strength of the 
correlation changes in specific land cover classes or cli-
mate conditions measured within 5-km and 10 km-buffer 
distances (Tables  1, 3: 5-km buffer; Additional file  2: 
Table S1; Additional file 3: Table S2 for all species within 
5  km and 10  km). The corresponding mean coefficient 
values derived across the 500 bootstrapped model repli-
cates, using random replacement in each replicate, with 
5% and 95% quantiles provide a measure of uncertainty. 
Key coefficient values for all species combinations with 
relative importance values > 0.01 are available in Addi-
tional file 2: Table S1; Additional file 3: Table S2.

Overall, the regression coefficients shown in Tables 1–
3 indicated that a greater number of vector species were 

Fig. 2 Proportions of mosquito genera across 2020 trap collections in Manatee County, FL

Fig. 3 Box plots of CRF analyses with covariates (left) and MRF 
analysis without covariates (right) show mean squared error (MSE) 
and deviance within 5 km. CRF, Conditional Markov Random Fields; 
MRF, Markov Random Fields
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unconditionally correlated with another mosquito vector 
species than with the environment; however, some spe-
cies did exhibit correlations with landscape and climate 
variables, and several species pairs were no longer cor-
related with one another when environmental variables 
were added. The log abundances for 16 of the 20 WNV 
and EEEV vector species investigated were uncondi-
tionally correlated with another mosquito vector or 

non-vector species (Table  1). Also, five vector species 
demonstrated conditional dependence on environmen-
tal variables (Table  2). Out of these five vectors, three 
WNV vector species, one EEEV vector species and one 
vector species of both WNV and EEEV were condition-
ally dependent on three climates (Bio2, Bio9, Bio15) and 
two landscape variables (developed and woody wet-
land) measured within a 5-km buffer distance (Table 2). 

Fig. 4 Network correlations between highly connected species pairs without (A) and with (B) environmental covariates measured within a 5-km 
buffer show the change in the number and direction of correlations between species pairs by adding all environmental covariates

Table 2 Conditional correlations between vector species and environmental variables within 5-km buffer radii

a WNV vectors
b WNV and EEEV vectors
c EEEV vectors

Vector species name Environmental variable Relative 
importance

5% quantile Mean coefficient 95% quantile

Aedes aegyptia Bio9 (Mean temperature of driest quarter) 0.680 0.064 0.064 0.064

Aedes taeniorhynchusa Bio2 (Mean diurnal range) 0.903 − 0.430 − 0.430 − 0.429

Aedes vexans s.l.b Bio9 (Mean temperature of driest quarter) 0.382 − 0.166 − 0.110 − 0.110

Culex coronator Developed 0.027 0.038 0.038 0.038

Culiseta melanurac [55, 58] Bio9 (Mean temperature of driest quarter) 0.303 − 0.035 − 0.035 -0.035

Bio15 (Precipitation seasonality) 0.446 0.042 0.042 0.042

Woody wetland 0.226 0.030 0.030 0.030

Table 3 Conditional correlations between species pairs where the strength of correlation varied with environmental variables within 
5-km buffer radii

a WNV vectors

Name of species 1 Name of species 2 Variable Relative 
importance

5% quantile Mean coefficient 95% quantile

Coquillettidia perturbansa Mansonia dyarii Cropland 0.286 0.132 0.132 0.132

Culex coronatora Anopheles cruciansa Woody wetland 0.053 − 0.053 − 0.053 − 0.053

Culex nigripalpusa Aedes taenorhynchusa Herbaceous wetland 0.026 − 0.056 − 0.056 − 0.056
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For example, Culiseta melanura, the primary vector 
for EEEV, only showed a strong conditional correlation 
with precipitation seasonality (Bio15; relative impor-
tance = 0.446), average temperature of driest quarter (Bio 
9; relative importance = 0.303) and woody wetland (rela-
tive importance = 0.226), and not with other mosquito 
species (Table 2). Results from models including environ-
mental variables measured within 10-km buffer distances 
indicated that five vector species showed conditional 
correlations with four climate variables (Bio2, Bio5, Bio9, 
Bio17) and one landscape (developed) variable (Addi-
tional file 3: Table S2).

We found limited evidence for conditional correlations 
between species pairs where the strength of correlations 
between these pairs changes in a specific landscape or 
climate variable, in both 5-km (Table 3) and 10-km buffer 
distances (Additional file 3: Table S2). Models run within 
a 5-km buffer distance indicated this category of condi-
tional correlations between only three species pairs in 
specific habitats (cropland, woody wetland, herbaceous 
wetland) (Table 3) where at least one species in the spe-
cies pairs is a vector. The relative importance of environ-
mental variables on conditional correlations increased 
within the 10-km buffer distance, with nine species pairs 
demonstrating conditional correlations varying with 
landscape and climate variables. While climate variables 
did not have any effect on the strength of conditional 
correlation between species pairs within 5 km (Table 3), 
climate variables impacted the strength of conditional 
correlations between seven species pairs within 10-km 
buffer radii (Additional file 3: Table S2).

Discussion
The diversity of host-seeking mosquito vectors with dif-
ferent feeding preferences and their spatial and temporal 
co-occurrences have been highlighted in previous stud-
ies to play an important role in the circulation, mainte-
nance and transmission of disease pathogens in mosquito 
populations [6, 8, 10]. In this study, we investigated abun-
dances of known and putative WNV and EEEV vector 
species using a community ecology approach that quan-
tified correlations with other vector and non-vector 
mosquito species, as well as with landscape and climate 
variables, and then determined if and how the strength 
of correlations between species pairs change across envi-
ronments. The result is a novel view of mosquito vector 
occurrence in the context of abiotic and community fac-
tors and highlights the potential to use species co-occur-
rences as indicators of vector abundances in the absence 
of direct observations, or under scenarios where environ-
mental variables are not informative.

Based on previous empirical observations linking mos-
quito vector abundances with environmental variables 

[59, 60], we expected to find that log abundances of vec-
tor species would be strongly correlated with the land-
scape and climate variables. Surprisingly, our results 
indicated that the log abundances of 10 out of 13 WNV 
vector species, three out of four EEEV vector species and 
three vector species for both WNV and EEEV were posi-
tively correlated with other mosquito species, but only 
weakly correlated or not correlated at all with environ-
mental variables. We only found three cases of negative 
correlation between species: Aedes aegypti and Man-
sonia titillans (mean coefficient value = −  0.044), Aedes 
infirmatus and Aedes fulvus pallens (mean coefficient 
value = −  0.059), and Aedes taeniorhynchus and Aedes 
atlanticus (mean coefficient value = −  0.059), indicating 
low log abundances of the former species of each pair at 
collection sites were associated with high abundances of 
the respective latter species (Table 1).

A challenge with interpreting co-occurrence results 
is how to link those to the underlying mechanisms. Co-
occurrence can provide a basis for more detailed studies 
attempting to demonstrate direct biotic interactions. It 
may also be that co-occurrence instead reflects differen-
tial micro-scale habitats not fully captured in the abiotic 
variables used. In the example above of a negative co-
occurrence of Ae. aegypti and Ma. titillans, Ae. aegypti 
prefers water containers in urban areas [20, 61, 62], 
whereas Ma. titillans requires more permanent freshwa-
ter with emergent aquatic vegetation [53, 63]. Given that 
our models were estimated for host-seeking mosquitoes, 
within their flight ranges, and do not fully capture the 
microscale habitat preferences, the negative co-occur-
rence may simply be due to this microscale patterning, 
rather than, for example, direct competition.

The correlation of WNV and EEEV vectors with other 
species and less with environmental variables, as shown 
in our results, may indicate: (i) geographic overlapping, 
due to small study area, in the flight ranges between the 
studied mosquito species, and/or (ii) that some of these 
vectors are typically broad-habitat generalists, which can 
present challenges when investigating occurrence pat-
terns using environmental variables alone. For example, 
the strong co-occurrence between Culex restuans and 
Culex quinquefasciatus and moderate co-occurrence 
between Aedes vexans and Ae. infirmatus may again 
reflect broad occurrence across landscape types. In addi-
tion, the potential for unmeasured covariance between 
spatial and temporal niche dynamics, especially given 
these taxa are known to be tied to the dynamics of wet 
season timing in North and Central Florida, may contrib-
ute to observed patterns [53, 64].

Our modeling approach does clearly delineate some 
broad-scale habitat specialists. For example, Cs. mela-
nura, the primary enzootic vector of EEEV, was strongly 
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correlated with landscape and bioclimatic variables, 
but not with other mosquito species. Compared to the 
more generalist vectors in our study area, Cs. melanura 
is a known specialist species with a strong preference 
for hardwood swamps as breeding habitats [65], and 
our results are consistent with those of previous studies 
that associated this species with woody wetland [66–68]. 
Another species, Ae. taeniorhynchus, was most abun-
dant in areas with low mean diurnal temperature ranges, 
which almost certainly reflects its coastal affinities [69–
71], where residual heating or cooling from ocean tem-
peratures reduces onshore fluctuations in temperatures 
and increases water salinity.

Variation in the strength and direction of dependence 
between pairs of vector species across different environ-
mental variables was of particular interest in terms of the 
goal of providing more comprehensive information about 
habitats in which multiple vector species may occur. 
Only one vector species, Cq. perturbans, demonstrated 
such conditional correlations. The shifts in the strength 
of mean coefficient values between Cq. perturbans and 
Ma. dyarii was affected by cropland habitats. The posi-
tive correlation between Cq. perturbans and Ma. dyari in 
croplands specifically, including wooded areas, reflects 
the importance of these habitats in predicting the level 
and strength of correlations between the two species 
compared to their unconditional correlations with each 
other in other habitats [72–75]. This conditional corre-
lation brings home that climatic and land-use changes 
may differentially shift risks for different disease vector 
abundances such as, for example, shifts in dry quarter 
precipitation differentially favoring Culex. nigripalpus 
(a competent WNV vector) at the expense of Ae. taenio-
rhynchus (a less competent WNV vector).

We observed insignificant differences between model 
performance with and without environmental vari-
ables for co-occurrences between species pairs. We also 
observed only slight variation in model results when 
comparing effects of environmental variables measured 
within 5-km buffer distances and within 10-km buffer 
distances, as indicated by the relative importance values. 
However, increasing our buffer radius from 5 to 10  km 
resulted in a slight increase in the number of vector spe-
cies demonstrating correlations with another mosquito 
species only, and not with environmental variables, from 
32 to 34 pairs. Increased buffer extents capture greater 
mosquito communities and potential variability in cli-
mate and landscape conditions, which may be only mar-
ginally variable across smaller geographic areas such 
as Manatee County.  Considerations of scale in the use 
of such approaches are particularly important to con-
sider, especially given our discussion above regarding 

complexities with interpreting co-occurrence (or co-
abundance) in relation to (here unmeasured) microhabi-
tat drivers.

Although the collected mosquito vector diversity in the 
current study was robust, additional longitudinal data of 
mosquito collections, which could include other sam-
pling techniques such as ovitraps, are needed to capture 
intra- and inter-annual population fluctuations between 
species pairs and to investigate additional environmen-
tal covariates at different resolutions across space and 
time. Moreover, the conditional correlations between 
host-seeking disease-vector species and other species not 
involved in the transmission of pathogens in specific hab-
itats and climate conditions need further investigation to 
identify variation in both intra- and inter-seasonal cor-
relations using a robust data collection across time and 
space. Additionally, because our study focused on host-
seeking female mosquitoes, further investigation into 
the contribution of mosquito flight distances and their 
contributions to observed patterns is warranted. The 
purpose of this study was not to dissect the underlying 
processes and mechanisms that determine community 
abundances across our study area; however, our results 
highlight points of interest for continued investigation 
in the context of understanding underlying transmission 
risk. Specifically, continued investigation into the contri-
butions of competition/exclusion in mature and imma-
ture habitats and the role of such biotic interactions in 
the distribution of vector mosquitoes will be critical.

Conclusion
The landscape and bioclimatic covariates did not sub-
stantially improve the overall model performance, and 
the majority of WNV and EEEV vector species were 
positively correlated with other vector and non-vector 
mosquito species. This may reflect: (i) the small geo-
graphic size of the study area with less environmen-
tal heterogeneity and that distances between habitats 
are within the foraging range of most of mosquito spe-
cies; (ii) that mosquito abundance and distribution in 
our study sites are predicted by the biotic factors (here 
unmeasured) in the water habitats, such as abundance 
of other mosquito species, and not climate; and/or (iii) 
that the mosquito community in Manatee County is 
habitat generalist, according to literature from simi-
lar studies. Only one exception, Culiseta melanura, the 
primary vector for EEEV, showed a strong conditional 
correlation with woody wetland, precipitation season-
ality and average temperature of driest quarter, but not 
any other species. Some of the studied mosquito vector 
species are habitat generalists, indicated by a low num-
ber of conditional correlations with environmental vari-
ables but which also indicated that the approach could 
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be operationalized to leverage species co-occurrences as 
indicators of vector abundances in unsampled areas, or 
under scenarios where environmental variables are not 
informative. Also, considerations of geographic scale in 
the use of CRF approach are particularly important to be 
addressed in future studies to explain the complexities of 
co-occurrence (or co-abundance) in relation to micro-
habitat drivers.
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