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Abstract 

Background  Mosquito-borne diseases exert a huge impact on both animal and human populations, posing sub‑
stantial health risks. The behavioural and fitness traits of mosquitoes, such as locomotion and fecundity, are crucial 
factors that influence the spread of diseases. In existing egg-counting tools, each image requires separate process‑
ing with adjustments to various parameters such as intensity threshold and egg area size. Furthermore, accuracy 
decreases significantly when dealing with clustered or overlapping eggs. To overcome these issues, we have devel‑
oped EggCountAI, a Mask Region-based Convolutional Neural Network (RCNN)-based free automatic egg-counting 
tool for Aedes aegypti mosquitoes.

Methods  The study design involves developing EggCountAI for counting mosquito eggs and comparing its perfor‑
mance with two commonly employed tools—ICount and MECVision—using 10 microscopic and 10 macroscopic 
images of eggs laid by females on a paper strip. The results were validated through manual egg counting on the strips 
using ImageJ software. Two different models were trained on macroscopic and microscopic images to enhance egg 
detection accuracy, achieving mean average precision, mean average recall, and F1-scores of 0.92, 0.90, and 0.91 
for the microscopic model, and 0.91, 0.90, and 0.90 for the macroscopic model, respectively. EggCountAI automatically 
counts eggs in a folder containing egg strip images, offering adaptable filtration for handling impurities of varying sizes.

Results  The results obtained from EggCountAI highlight its remarkable performance, achieving overall accuracy 
of 98.88% for micro images and 96.06% for macro images. EggCountAI significantly outperformed ICount and MEC‑
Vision, with ICount achieving 81.71% accuracy for micro images and 82.22% for macro images, while MECVision 
achieved 68.01% accuracy for micro images and 51.71% for macro images. EggCountAI also excelled in other sta‑
tistical parameters, with mean absolute error of 1.90 eggs for micro, 74.30 eggs for macro, and a strong correlation 
and R-squared value (0.99) for both micro and macro. The superior performance of EggCountAI was most evident 
when handling overlapping or clustered eggs.

Conclusion  Accurate detection and counting of mosquito eggs enables the identification of preferred egg-laying 
sites and facilitates optimal placement of oviposition traps, enhancing targeted vector control efforts and disease 
transmission prevention. In future research, the tool holds the potential to extend its application to monitor mosquito 
feeding preferences.
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Background
Mosquito-transmitted pathogens are considered deadly 
due to their worldwide impact on public health [1]. 
Annually, they are responsible for around 230 million 
cases of malaria [2], significantly impacting children 
under 5  years of age [3], while the dengue virus causes 
an estimated 390 million infections, with about 20,000 
deaths per year [4]. Despite over 100  years of research 
and deployment of mosquito control approaches includ-
ing long-lasting insecticidal nets (LLINs) and indoor 
residual spraying (IRS), diseases transmitted by mos-
quitoes remain a concern worldwide [5]. The impact of 
mosquito-transmitted diseases will also likely worsen in 
the future due to the increase in key factors of patho-
gen spread, such as the growing population, urbanisa-
tion, lack of infrastructure in large cities, climate change, 
insecticide resistance, travel, and trade [6].

Infections with pathogens can modulate different 
behavioural and fitness traits of mosquitoes such as 
locomotion, blood-feeding, fecundity, and fertility [7]. 
Mosquito-borne viruses can also significantly impact 
the mosquito’s nervous system, leading to behavioural 
changes that influence their transmission of mosquito-
borne diseases [8–10]. In an epidemiological context, it 
is necessary to assess mosquito fitness, as this may aid in 
understanding how different mosquito populations adapt 
to environmental conditions [11, 12] and the interactions 
between vectors and their pathogens [13, 14]. Fecundity, 
the number of eggs laid by female mosquitoes, is a criti-
cal trait in determining a mosquito’s fitness, and has been 
used as a marker to assess the population fitness of mos-
quitoes [15]. Fecundity also helps in estimating the popu-
lation density and infestation of the vector in a specific 
area by assessing the number of eggs present in the desig-
nated area, on a spatio-temporal basis, considering both 
spatial distribution and changes over time [16].

Aedes aegypti mosquitos are the primary vector of sev-
eral medically significant viruses, including dengue, Zika, 
yellow fever, and chikungunya. Female mosquitoes can 
lay anywhere from 20 to 140 eggs per blood meal depend-
ing on factors such as the quantity of blood consumed 
and the female’s body size and reproductive capacity [17]. 
Additionally, the Aedes mosquito’s reproductive success 
is influenced by its eco-biological features, including skip 
oviposition, where females lay eggs in multiple batches 
in different breeding sites for diverse offspring distribu-
tion [18]. The ability of their eggs to enter a dormant state 
(quiescence) during unfavourable conditions ensures sur-
vival and widespread dispersion [19]. With both active 
(larvae, pupae, adults) and passive (quiescent eggs) popu-
lations present, Aedes mosquitoes maintain a continuous 
presence in the environment, making them significant 
disease vectors. Understanding these factors is vital for 

effective vector control and disease prevention strate-
gies. Novel vector control strategies such as the release of 
modified mosquitoes involve the mass rearing and pro-
duction of thousands of mosquitoes, possibly over many 
gonotrophic cycles and generations, requiring the count-
ing of hundreds of thousands of eggs [20]. Additionally, 
in endemic areas, egg samples can be highly complex, 
with multiple layers of eggs. Counting the number of 
eggs manually with the aid of a magnifying lens or optical 
microscope makes the process tedious, slow, laborious, 
and prone to errors.

The automatic counting of mosquito eggs is a subject 
that has received considerable attention in the last few 
years, with several automatic egg-counting tools having 
recently been developed. Some of these tools use seg-
mentation to acquire pixels containing mosquito eggs 
[21, 22], while others provide graphical user interfaces 
through a web app [23] or computer software [24, 25]. 
A recent study also employed a wavelet-based method 
to count eggs [26]; however, unlike the others listed, 
it requires knowledge of mathematical techniques to 
process samples. Some tools also required extensive 
hardware for successful counting, such as scanners, light-
emitting diode (LED) lighting, and mechanical support 
[27, 28]. In most egg-counting tools, although some oper-
ations work automatically, each image must be processed 
separately by manually adjusting the different param-
eters, such as intensity threshold value and the minimum 
and maximum size of a unit egg area. Additionally, the 
performance/accuracy of these current methods signifi-
cantly decreases when eggs in the image are in clusters or 
overlap.

Convolutional neural networks (CNNs) are a class of 
deep neural networks that have revolutionised computer 
vision tasks by enabling automatic feature extraction [29]. 
CNNs are equipped with features like instance segmen-
tation and non-maximum suppression (NMS) to accu-
rately identify and segment objects, even when they are 
overlapping or close together [30]. In mosquito research, 
CNNs have been used to identify many different char-
acteristics including breeding site detection [31], flight 
tracking [32], genus classification [33], and egg identifica-
tion [34]. However, no CNN-based tool has been devel-
oped to count the number of eggs laid by mosquitoes. 
Considering the potential of CNNs, it is hypothesised 
that the application of CNNs could help in counting mos-
quito eggs with higher accuracy than current methods.

To overcome limitations such as decreased perfor-
mance when the eggs in the image are in clusters or 
overlap, and the tedious requirement of processing each 
image separately, we have developed a CNN-based free 
software, EggCountAI, to count Aedes mosquito eggs. 
The software can count eggs laid on a paper strip from 
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a folder containing several micro or macro images, and 
also offers filtration to remove undesired impurities such 
as mosquito remains and dust particles. In order to test 
the software’s capability, we compared EggCountAI with 
two widely used tools, ICount (developed under the same 
supervision team) [24] and MECVision (Mosquito Egg 
Computer Vision) [23].

Methods
Maintenance rearing
All experiments were performed under biosafety level 
3 (BSL-3) conditions in the insectary at the Austral-
ian Centre for Disease Preparedness (ACDP). The Ae. 
aegypti strain used in this study was originally from 
Cairns, Queensland, and has been kept in the insec-
tary for around 70 generations. This strain was reared at 
27.0 °C with 65% relative humidity and a 12-h light/dark 
cycle. To hatch, previously laid egg strips were intro-
duced to reverse osmosis (RO) water, where impurities 
and contaminants were eliminated via a semipermeable 
membrane. Larvae were fed fish food (Sera, Germany) 
as required until pupae formation, approximately 7 days 
post hatching. Adult mosquitoes were then transferred to 
a colony cage and fed 10% sucrose solution ad libitum.

Artificial blood‑feeding and egg collection
Chicken blood meal was provided using chicken skin and 
an artificial blood-feeding device (Hemotek®, Accring-
ton, UK) once a week, lasting 1 h each time. Three days 
post-blood meal, beakers were deployed in the cage for 
female oviposition. A strip of sandpaper measuring the 
perimeter of a 100-ml beaker (160  mm) in length was 
inserted into the container. The container was then filled 
with 50 ml of water up to a depth of half the width of the 
sandpaper strip (25  mm). After the completion of mos-
quito oviposition, which typically occurred within 5 days 
of the blood meal, the sandpaper strip was taken out of 
the colony cage and allowed to dry at room temperature.

Capturing and processing of images
Once the sandpaper strip containing eggs was col-
lected and dried, images of the strip could be taken at 
any time. Two distinct types of images were collected, 
labelled “micro” or “macro”, following a similar pattern 
as described in other studies [23, 24]. Using a camera 
(Olympus Tough TG-6), an image of the entire sand-
paper strip was captured with the focus on the plane of 
the eggs. This collection of images will be referred to as 
“macro” in this paper. The second image type was taken 
utilising a microscope (Nikon SMZ18) set at 8.0× mag-
nification with a 1.0× objective lens with the Nikon NIS-
Elements software (Nikon, Japan). These images will be 
referred to as “micro”. Macro images were cropped with 

the help of the Photos app (Microsoft Windows) to elimi-
nate the area without mosquito eggs. Micro images were 
ready for analysis without any pre-processing.

Training and validation
Two different models were trained based on macro and 
micro images to improve accuracy in egg detection. In 
the case of the micro image-based model, 100 images 
were collected, with 70 used for training purposes, 20 
used for validation, and 10 used for testing purposes. 
The dataset used for training contained images with egg 
counts ranging from 13 to 167, while the validation set 
comprised images with egg counts between 24 and 182. 
In the testing phase, the images had object counts rang-
ing from 104 to 215. The model was trained for 20 epochs 
with 500 steps per epoch, and the detection threshold 
was set to 70%, resulting in the exclusion of proposals 
with a confidence level below 0.7 out of 1.0. Training and 
validation data annotations were created with the help of 
the MakeSense web tool [35] in the form of a .json file.

In the case of the macro image-based model, 100 
images were collected, from which 70 were used for 
training purposes, 20 for validation, and 10 for testing. 
The dataset used for training contained images with egg 
counts ranging from 133 to 624, while the validation set 
comprised images with egg counts between 76 and 357. 
In the testing phase, the images had object counts rang-
ing from 1047 to 3658. The macro model was also trained 
for 20 epochs with 500 steps per epoch, and the detection 
threshold was 70%.

Although our dataset consisted of only 100 micro and 
100 macro images, we ensured its diversity by capturing 
various types of egg clusters and orientations of eggs to 
thoroughly train and test our model.

Programming and computational system
All software development and data processing were 
performed in a Windows 11 Pro 64-bit environment 
using the AMD Ryzen 9 5900HX with Radeon graph-
ics (3.30  GHz) processor and 2 × 16  GB small outline 
dual inline memory module (SO-DIMM) double data 
rate (DDR)4-3200 random access memory RAM. The 
graphical user interface of EggCountAI was implemented 
using Python 3.8, TensorFlow 2.40, and OpenCV 4.6.0.66 
software.

Manual counting
To validate the accuracy of EggCountAI software, a man-
ual egg count was performed using ImageJ software [36]. 
The Multi-point Tool was selected to insert the multiple 
points inside the image of the sandpaper strip. The Add 
[t] feature inside the ROI (Region of Interest) Manager 
of ImageJ helped to add all multi-points along with the 
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decimal count value (Fig. 1a). Decimal count values and 
Multi-point eliminated the chances of errors in manual 
counting.

Performance evaluation and statistical analysis
The performance of tools was validated using percent-
age accuracy, overall percentage accuracy, mean absolute 
error, correlation (quantifying the strength of the linear 
relationship between ground truth egg counts and the 
egg counts calculated by the tools), and the R-squared 
value. For percentage accuracy, individual images were 
considered, while for overall percentage accuracy, the 
same formula was used but all images of the relevant 
dataset were considered. The formula used for the per-
centage accuracy is given in Eq. 1.

The SciPy library in Python was used to calculate the 
mean absolute error, correlation, and R-squared value.

Model architecture
The type of deep neural network used in EggCountAI is 
the Mask region-based CNN (RCNN). Mask RCNN is 
a deep learning model that excels in detecting objects 
and segmenting them in computer vision applications 
[32]. The architecture of Mask RCNN is a comprehen-
sive composition of several key components, including 
a backbone network, region proposal network (RPN), 
RoIAlign layer, bounding box regression and classifica-
tion head, mask head, loss functions, and training and 
inference, each playing a vital role in its object detection 
and segmentation capabilities. At its core is the back-
bone network, responsible for feature extraction from 
the input image. In EggCountAI, we utilised ResNet-101 
as the backbone network because of its deep architec-
ture and remarkable ability to capture intricate features, 
resulting in enhanced precision and more detailed seg-
mentation masks. ResNet-101 comprises a total of 101 
layers. Each layer is designed to handle distinct tasks, 
such as edge detection and texture identification. The 
RPN comes into play next. The RPN processes the input 
image and generates potential object regions in the form 
of rectangular bounding boxes. These regions are then 

(1)Percentage accuracy =

(

1−

∣

∣number of eggs counted by software− ground truth number of eggs
∣

∣

ground truth number of eggs

)

∗ 100

refined by the bounding box regression and classification 
head, which uses fully connected layers to predict class 
labels and improve the accuracy of bounding box coor-
dinates. For precise feature extraction within proposed 
regions, the RoIAlign layer is utilised, ensuring optimal 
alignment without quantisation. The mask head takes 
these aligned features and predicts binary masks for each 
detected object instance, enabling precise segmentation. 
The model training is supported by multiple loss func-
tions, including smooth L1 loss for bounding box regres-
sion, cross-entropy loss for classification, and pixel-wise 
binary cross-entropy loss for mask prediction. The model 
processes new images during inference, generating object 
proposals, class predictions, and segmentation masks 
(Fig. 1c).

Egg estimation using EggCountAI software
EggCountAI provides five flexible input parameters: (1) 
choosing between micro and macro image analysis type, 
(2) setting vertical divisions, (3) setting horizontal divi-
sions, (4) setting the filtration level, and (5) adjusting 
the detection confidence threshold. Micro and macro 
options can be selected considering the input data type. 
Vertical and horizontal divisions can divide the input 
image into smaller patches, enabling the processing of 
larger images that would be otherwise infeasible due 
to memory limitations or computational constraints 
(Fig.  1b). Both horizontal and vertical divisions accept 
values from 1 to 40. Setting the value to 1 for both hori-
zontal and vertical divisions means that the input image 
will not be divided into any number of patches (mainly 
used for the micro images, as they generally have suffi-
cient zoom). Setting the value to 2 for both means that 
the input image will be divided into a 2 × 2 grid of four 
equal-sized patches, and setting the value to 40 for both 
means that the input image will be divided into a 40 × 40 
grid of 1600 equal-sized patches. The division is only for 
processing purposes, and after processing, the patches 
will be combined, and the output image will be in the 
form of the entire input image.

Whilst setting of the horizontal and vertical divisions 
is mainly for use with macro images, it can also be useful 

(See figure on next page.)
Fig. 1  Manual counting, overlying grid on the image, and egg-counting methodology. a Example of manual counting using the ImageJ 
Multi-point Tool. b Overlying grid on the image to create patches for processing larger images. The image in the figure shows three horizontal 
and four vertical divisions, making 12 patches. c EggCountAI is based on the Mask RCNN. The input image data feed into the Mask RCNN. Mask 
RCNN applies its two-stage approach, generates potential object regions, and applies different convolutional and fully connected layers to produce 
binary masks. The masks that do not fulfil the limits set through the filtration parameter are excluded from the final results
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Fig. 1  (See legend on previous page.)
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for micro images depending on the magnification of the 
microscope. The value of horizontal and vertical divisions 
for this study was two vertical and two horizontal divi-
sions for micro images and 25 vertical and seven hori-
zontal divisions for macro images, as the macro images 
had greater widths than heights, and the sizes of eggs 
in the images were also very small. Setting the filtration 
level parameter can be used to eliminate noise and impu-
rities from the input image. It takes a value within a range 
from 0.1 to 10.0. Setting the value to 0.1 means that it will 
eliminate all the objects in each patch which are 0.1 times 
larger or smaller than the average size of eggs in that 
patch. Setting the value to 10.0 means that it will elim-
inate all the objects in each patch which are 10.0 times 
larger or smaller than the average size of eggs in that 
patch. The default value of the filtration level is set at 3.0 
and kept the same during the analysis in this study. The 
confidence value shows the minimum confidence level 
that a detected egg must have to be part of the counted 
eggs. The confidence value ranges from 0.0 to 1.0, where 
1.0 means that the software is fully confident that the 
detected object is the mosquito egg. A default confidence 
value of 0.7 was used.

After these parameters have been set, the input folder 
containing the macro or micro images can be selected. 
EggCountAI will create a new folder, named “Results”, 
inside the input folder during processing that con-
tains the processed input images with a common prefix 
“Result” in their names. EggCountAI also creates a sim-
ple text file in the Results folder containing the names of 
the processed images and the number of eggs detected. 
For instance, if the name of the input image is Eggimage1, 
the Results folder will contain the processed image with 
the name Result-Eggimage1 and the text file will show the 
name Result-Eggimage1 along with the number of eggs 
detected. Besides saving the processed images and logs in 
the Result folder, the software will show the input images, 
processed images, and numbers of eggs detected in the 
user interface. The software also allows the user to stop 
the process at any time by pressing the stop button and 
will save the partially processed results. The egg-counting 
procedure was displayed on the user interface as depicted 
in Fig. 2.

Results
The results obtained from training and validation were 
impressive, showing mean average precision, mean aver-
age recall, and F1-score values of 0.92, 0.90, and 0.91 for 
the microscopic model and 0.91, 0.90, and 0.90 for the 
macroscopic model, respectively, despite the limited 
dataset size. The precision–recall curve for micro image 
training is given in Fig. 3a, and the curve for macro image 

training is given in Fig.  3b. The precision–recall curve 
demonstrates the relationship between precision (posi-
tive predictive value) and recall (sensitivity) at various 
thresholds in binary classification tasks. Although the 
results were exceptional, we acknowledge the potential 
for further improvement by incorporating additional 
strategies for limited datasets, such as data augmenta-
tion, to increase the dataset size and improve training 
artificially. Additionally, the small dataset size may have 
implications for the model performance and generaliz-
ability, and a larger dataset could provide better perfor-
mance for different scenarios [36]. For instance, studies 
related to mosquito classification have used more than 
4000 images [37, 38], although they dealt with multi-
class classification rather than our single-class scenario. 
Ten macro images and 10 micro images were processed 
through EggCountAI. Each set of data was processed 
separately by selecting micro and macro options from the 
software.

Micro images
The performance of the EggCountAI tool for micro 
images was analysed on a dataset of 10 random micro 
images containing egg numbers ranging from 104 to 215 
(Table 1). EggCountAI successfully detected eggs in each 
image with a high level of accuracy, and was able to iden-
tify those that were overlapping, demonstrating the tool’s 
effectiveness with complex datasets. The high level of 
accuracy of detection across the datasets analysed show-
cases EggCountAI’s ability to adapt to different egg pat-
terns, with overall accuracy of 98.88% for the tool across 
all images.

To further illustrate the performance of EggCountAI, 
Fig. 4a–d shows a combined image of four out of the 10 
processed images, with rectangles outlining the detected 
eggs. This visual representation enables a comprehensive 
understanding of EggCountAI’s performance, highlight-
ing the accurate detection.

Macro images
The performance of the EggCountAI tool for macro 
images was analysed on a dataset of 10 random macro 
images containing between 1047 and 3658 eggs (Table 2). 
The EggCountAI tool exhibited remarkable efficacy in 
accurately detecting a significant number of eggs in each 
image, including instances where the eggs were very close 
to each other, highlighting its effectiveness in assessing 
samples obtained without a microscope.

Table 2 presents the egg detection results for the macro 
images. Based on the findings presented in Table  2, it 
can be observed that EggCountAI achieved above 91% 
accuracy in all macro images. The overall accuracy was 
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96.06%, showing that EggCountAI can achieve outstand-
ing results even if macro images are fed with thousands 
of eggs.

Figure 5a–d presents a combined image of four macro 
images out of the 10 processed images, where rectan-
gles outline the detected eggs. The figure shows that 
EggCountAI has successfully detected most of the eggs, 
including the eggs as part of clusters.

Comparative analysis of accuracy in EggCountAI, 
ICount, and MECVision
To further evaluate the performance of EggCountAI, 
we conducted a comparative analysis by comparing the 
results of EggCountAI with the results obtained from 
ICount and MECVision. The comparison was based on 
the overall percentage accuracy for the micro and macro 
images, as discussed below.

Micro images
The previously used 10 micro images were run through 
the ICount and MECVision and compared with Egg-
CountAI (Table  3). In terms of percentage accuracy, 
EggCountAI significantly outperformed both ICount 
and MECVision, with overall accuracy of 98.88%, versus 
81.71% and 68.01%, respectively. In addition, EggCountAI 
demonstrated superiority in other statistical parameters, 
achieving mean absolute error of 1.90 eggs, showcasing 
highly precise estimations. Moreover, the predicted val-
ues and actual counts exhibited a strong relationship, 
with a correlation and R-squared value of 0.99 (Fig. 6a).

When analysing micro images, results show that the accu-
racy of the ICount software decreased where eggs were over-
lapping or close to the neighbouring eggs (Fig. 7a), while the 
MECVision software even missed some single eggs as well 
as eggs in clusters (Fig. 7b). However, EggCountAI was able 
to successfully detect most of the eggs irrespective of their 
closeness and overlapping (Fig. 7c).

Fig. 2  EggCountAI graphical user interface
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Fig. 3  Precision–recall curves. a Precision–recall curve based on micro image training. b Precision–recall curve based on macro image training
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Macro images
For comparison based on macro images, the macro 
images were processed through ICount and MECVision 
and compared with EggCountAI results (Table  4). Egg-
CountAI again demonstrated superior performance rel-
ative to the other two, with overall accuracy of 96.06%. 

The overall accuracy of ICount and MECVision was 
82.22% and 51.71%, respectively. In macro image analysis, 
EggCountAI continued its remarkable accuracy in other 
statistical parameters. It achieved mean absolute error of 
74.30 eggs, providing reliable counts for macro images. 
Similar to micro images, the correlation and R-squared 
value of 0.99 indicated a strong relationship between pre-
dicted values and actual counts (Fig. 6b).

ICount analysis of macro images showed similar per-
formance as in the case of micro images and missed eggs 
where they were overlapping or in the form of clusters 
(Fig.  8a). In the case of MECVision, along with missing 
a few single eggs and clusters of eggs, MECVision also 
cropped the macro input image in a small part (Fig. 8b), 
demonstrating that it might have some size limitation for 
the input image. If that is the case, it is tedious to crop 
the egg strip image in small chunks and then process it. 
Also, it was not confirmed whether it considers the whole 
input image for the counting or only the small part that 
it shows during processing. In contrast, regardless of egg 
proximity and overlapping, EggCountAI demonstrated a 
high success rate in detecting most of the eggs (Fig. 8c).

Table 1  EggCountAI results for micro images of Ae. aegypti eggs

Image Ground truth EggCountAI Accuracy %

1 189 186 98.41

2 156 153 98.07

3 157 157 100

4 183 180 98.36

5 158 154 97.46

6 177 177 100

7 124 123 99.19

8 215 212 98.60

9 104 104 100

10 150 149 99.33

Total 1613 1595 98.88

Fig. 4  EggCountAI results based on micro images of Ae. aegypti eggs, with images showing a 153, b 157, c 123, and d 212 eggs detected
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Discussion
Vector control remains a vital strategy in the battle 
against mosquito-borne diseases. Information about 
fecundity is integral to effective mosquito management 
strategies. It can provide valuable data for surveillance 

and monitoring programmes [37], identifying areas with 
high mosquito populations [38] and potential breeding 
sites [39], and assessing the effectiveness of vector con-
trol interventions [40]. Fecundity information can also be 
used to assess physical measurements and fitness, as it 
has shown a strong correlation with pupal mass and wing 
size [41].

Manual counting of mosquito eggs is a laborious and 
time-consuming task. The use of automatic tools for egg 
counting offers numerous benefits, including reduced 
counting time, the ability to process more images, and 
avoidance of human errors. We have developed Egg-
CountAI, which can easily count thousands of Ae. aegypti 
eggs, and with high accuracy of 98.88% in the case of 
micro images and 96.06% in the case of macro images. 
Additionally, EggCountAI has the potential to extend its 
high-accuracy counting to Aedes albopictus eggs, consid-
ering the importance of monitoring this invasive species 
in various regions.

Other egg-counting software such as ICount [24] and 
MECVision [23] require manual processing to upload 
individual images and for adjusting the input parameters 

Table 2  EggCountAI results for macro images of Ae. aegypti eggs

Image Ground truth EggCountAI Accuracy %

1 2377 2185 91.92

2 1579 1544 97.78

3 1821 1775 97.47

4 1416 1391 98.23

5 1490 1439 96.57

6 2126 2112 99.34

7 1748 1724 98.62

8 1047 1041 99.42

9 3658 3344 91.41

10 1611 1575 97.76

Total 18,873 18,130 96.06

Fig. 5  EggCountAI results based on varying density of macro images of Ae. aegypti eggs, with images showing a 1575, b 1724, c 2112, and d 3344 
eggs detected
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for each image separately, as the size of the eggs and size 
of the clusters of eggs can vary in each image. Hence, 
separate adjustment of minimum egg size, maximum egg 
size, and maximum cluster size is needed. The advantage 
of EggCountAI is that it does not require adjustment of 
input parameters for each image separately, as it intel-
ligently performs egg detection based on a CNN. Addi-
tionally, image uploading is very simple and does not 
require feeding each image separately, enabling the pro-
cessing of a large number of images within a folder in a 
single operation without any supervision.

Oviposition traps (OVTs) have emerged as a crucial 
strategic monitoring instrument, owing to their greater 
sensitivity than that of larval or adult monitoring in 
Aedes control [42], and have recently gained widespread 
recognition for their efficacy in monitoring and reduc-
ing Aedes environmental populations [43]. Various tools 
have been used to count eggs from data acquired through 
OVTs [21, 44]. However, the number of eggs in each test-
ing data sample was less than 500. Counting and record-
ing eggs from the OVTs can pose significant challenges, 
particularly when manual counting is infeasible due to 
the sheer volume of eggs and their intricate distribution 
on the oviposition substrate. To address these issues, the 
integration of EggCountAI holds promise in overcoming 
difficulties associated with certain egg samples. While 
EggCountAI has exhibited high accuracy during evalu-
ations under controlled lab conditions using images of 
sandpaper strips with no environmental influences, it 
is important to note that in endemic areas, egg samples 
can be considerably more complex, often featuring mul-
tiple layers of eggs on the substrate and vulnerability to 
environmental factors such as dust particles. To enhance 

detection accuracy in such areas, the choice of the sub-
strate becomes crucial, as it should provide sufficient 
contrast between the substrate and eggs. Additionally, 
deploying OVTs for limited durations can help mitigate 
the formation of multiple egg layers. To minimise the 
impact of the open environment, custom-designed OVTs 
can be developed to exhibit greater resistance towards 
various environmental factors, further refining the moni-
toring and control of Aedes populations.

While EggCountAI can accurately count eggs within 
an image, it does have a limitation: it may cut off eggs 
located at the boundary of patches when creating a grid 
of rows and columns to analyse the image, which could 
result in eggs not being counted or counted multi-
ple times during processing. A possible solution to this 
problem is to overlap across the boundary of patches. 
However, the inclusion of an overlap resulted in poor 
performance and was therefore excluded. Alternatively, 
the ability to use filtration parameter settings is helpful in 
reducing the impact of this problem. For instance, if the 
filtration parameter value is set to 3.0 and the grid patch 
cuts small parts of an egg across neighbouring patches 
that are three or more times smaller than the average size 
of the eggs, that would be filtered out during processing. 
In the case of multiple counting of a single egg, it can 
only be counted multiple times if it cuts the significant 
portions of the egg across neighbouring patches that fall 
out of the adjusted filtration value.

Conclusion
The fitness traits of mosquitoes, including flight and 
egg-laying ability, are among the factors influencing 
disease spread. Current egg-counting tools require 
separate processing for each image and struggle with 
accuracy for clustered or overlapping eggs. Here we 
have presented EggCountAI, a free automatic artificial 
intelligence (AI)-based Aedes mosquito egg-counting 
tool. Compared with currently available software, Egg-
CountAI performed remarkably well, with significantly 
increased accuracy and the ability to discern more 
complex samples when processing either micro or 
macro images. EggCountAI surpassed both ICount and 
MECVision in performance, achieving overall accuracy 
of 98.88% for micro images and an impressive 96.06% 
accuracy for macro images. In addition to its superior 
performance, EggCountAI offers advantages includ-
ing the lack of need to adjust input parameters for each 
image individually, the batch processing of images, and 
effective filtration of undesired impurities.

EggCountAI has the potential to revolutionise mos-
quito research and disease control strategies. By 
accurately detecting and counting mosquito eggs, 

Table 3  Comparative analysis of EggCountAI, ICount, and 
MECVision based on micro images of Ae. aegypti eggs

Image Ground truth EggCountAI ICount MECVision

1 189 186 149 127

2 156 153 133 121

3 157 157 130 107

4 183 180 159 132

5 158 154 121 99

6 177 177 143 133

7 124 123 110 104

8 215 212 164 98

9 104 104 84 74

10 150 149 125 102

Overall accuracy % 98.88% 81.71% 68.01%

Mean absolute error 1.90 27.0 52.60

Correlation 0.99 0.96 0.54

R-squared 0.99 0.93 0.29
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Fig. 6  Correlation curves based on linear regression for comparative analysis of a micro images and b macro images
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EggCountAI can help to identify critical egg-laying 
sites and strategically place OVTs, leading to a deeper 
understanding of mosquito behaviour and fitness traits. 
Embracing AI in mosquito research improves vector-
borne disease modelling and enhances our understand-
ing of pathogen transmission, leading to more effective 

disease prevention and proactive public health meas-
ures for a healthier and safer future.

This deep neural network-based egg-counting tool is 
one step towards employing AI in studying mosquito 
behavioural and fitness traits. Continuously devel-
oping and exploring AI-based tools can significantly 
enhance disease control and prevention strategies.

Fig. 7  Comparative analysis of ICount, MECVision, and EggCountAI based on micro images of Ae. aegypti eggs. a A total of 149 eggs were counted 
by ICount. Blue arrows show the areas where eggs were overlapping or close to the neighbouring eggs. b A total of 127 eggs were counted 
by MECVision. Red arrows show the areas where the eggs were not counted. c A total of 186 eggs were counted by EggCountAI
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