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Abstract 

Background  Mosquitoes are carriers of tropical diseases, thus demanding a comprehensive understanding 
of their behaviour to devise effective disease control strategies. In this article we show that machine learning can 
provide a performance assessment of 2D and 3D machine vision techniques and thereby guide entomologists 
towards appropriate experimental approaches for behaviour assessment. Behaviours are best characterised 
via tracking—giving a full time series of information. However, tracking systems vary in complexity. Single-camera 
imaging yields two-component position data which generally are a function of all three orthogonal components 
due to perspective; however, a telecentric imaging setup gives constant magnification with respect to depth 
and thereby measures two orthogonal position components. Multi-camera or holographic techniques quantify all 
three components.

Methods  In this study a 3D mosquito mating swarm dataset was used to generate equivalent 2D data via telecentric 
imaging and a single camera at various imaging distances. The performance of the tracking systems was assessed 
through an established machine learning classifier that differentiates male and non-male mosquito tracks. SHAPs 
analysis has been used to explore the trajectory feature values for each model.

Results  The results reveal that both telecentric and single-camera models, when placed at large distances 
from the flying mosquitoes, can produce equivalent accuracy from a classifier as well as preserve characteristic 
features without resorting to more complex 3D tracking techniques.

Conclusions  Caution should be exercised when employing a single camera at short distances as classifier balanced 
accuracy is reduced compared to that from 3D or telecentric imaging; the trajectory features also deviate compared 
to those from the other datasets. It is postulated that measurement of two orthogonal motion components 
is necessary to optimise the accuracy of machine learning classifiers based on trajectory data. The study increases 
the evidence base for using machine learning to determine behaviours from insect trajectory data.
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Background
Mosquito-borne diseases present a significant risk to 
human health, with nearly 700 million cases and 750,000 
deaths reported globally each year [1]. To combat these 
diseases, it is crucial to understand the behaviour of 
mosquitoes. Tracking mosquitoes produces trajectories 
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that can return valuable insights into their flight 
behaviour and has already led to significant advances 
in disease prevention. For instance, early studies on 
mosquito trajectories led to the development of an 
improved insecticide-treated net (ITN) design that 
provides better protection against disease transmission 
[2]. Further research on mosquito behaviour is likely to 
lead to other such improvements.

Previously, many tracking studies involved manual 
processing to capture behaviours, with a number of 
examples concerning mosquitoes [3–5]. However, 
advancements in high-resolution cameras, computational 
power and computer vision technology have enabled 
automated tracking of behaviour [6]. Typically, this 
involves using cameras to capture videos or images that 
are subsequently processed to identify the mosquitoes 
or objects of interest. To facilitate accurate tracking, 
experiments rely on a clear contrast between the insect 
and background, achieved by illumination control. 
Appropriate lighting can be achieved using front, back 
or side illumination with artificial sources where the 
wavelength is normally selected in an insect blind region 
of the spectrum; in some cases natural lighting from the 
sun can be used effectively [7, 8]. Tracking individual 
insects entails analysing the contrast differences within 
the images. By applying appropriate thresholds, the 
objects of interest are accurately segmented from the 
background.

Insect behaviour can be quantified using two-
dimensional (2D) or three-dimensional (3D) tracking 
systems. Three-dimensional tracking provides full 
quantitative measurement of the three orthogonal 
components of an object’s position and movement in 
3D space. This is at the expense of a more complex 
imaging setup and hence higher cost. The most widely 
used approach for 3D tracking is stereo vision with a 

pair of rigidly coupled cameras (Fig.  1) [7]. The camera 
separation is one of the main factors that determines 
the resolution of the depth information with respect 
to the cameras, increased separation giving improved 
resolution at the expense of less correspondence between 
the camera views, a larger setup and needing a more 
rigid mechanical coupling between the cameras. Camera 
calibration is crucial, particularly when attempting to 
construct 3D trajectories from stereo cameras. This 
process involves establishing a relationship between the 
2D coordinates obtained from each camera and the 3D 
coordinates of markers in a known pattern from a set of 
calibration frames. Typically, stereo camera calibration 
has to be performed in  situ and also compensates for 
lens distortion [6]. In contrast, 2D tracking recovers 
the motion of a body from the projection of its position 
onto the 2D image plane of a single camera and some 
information is lost (Fig.  2). The two-component 
information obtained, in general, is a combination 
of the three orthogonal position components due 
to perspective projection. The field of view has an 
angular limit, determined by the camera lens. Hence, 
a specific mosquito movement at the front and back 
of the measurement volume will give differing results 
in pixels on the camera. Fortunately, several software 
packages are available that facilitate automated tracking. 
These packages provide functionalities for image pre-
processing, object identification, and trajectory analysis, 

Fig. 1  Schematic of stereo camera setup for 3D mosquito tracking 
illustrating the boundaries of the space imaged by both cameras 
and where 3D measurements are possible

Fig. 2  Schematic of single-camera setup for 2D mosquito tracking. 
The imaged volume is determined by the angular field of view, θ, 
and hence increases with distance from the camera
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streamlining the tracking process and reducing the 
manual effort required [9–11].

Telecentric imaging was introduced for single-camera, 
2D measurement applications as an object appears at the 
same size irrespective of its position along the optical axis 
(Fig.  3) [12]. It employs a lens with aperture matching 
the field of view, and Fresnel lenses enable large, metre-
scale applications (see inset in Fig.  3). The telecentric 
arrangement is achieved by spacing the two lenses on the 
camera side by a distance equal to the sum of their focal 
lengths. This geometry removes the perception of depth 
and eliminates perspective distortion [12, 13]. Wide-
angle LED sources with a large aperture Fresnel lens for 
illumination makes telecentric imaging well suited for 
indoor recordings.

In recent studies, researchers have explored 2D and 3D 
trajectories, shedding light on their respective merits and 
limitations. A notable investigation focused on zebrafish 
behaviour, where a comparison was made between 3D and 
2D tracking [14]. To capture the zebrafish movements, 
two cameras were positioned to view orthogonal planes 
within a large water tank. Videos were processed into 
frames and analysed with a 3D multi-target tracking 
algorithm [15] resulting in the quantification of a range 
of essential behavioural characteristics. Intriguingly, the 

analysis revealed consistent underestimation of these 
behavioural features when relying solely on 2D views. 
This discrepancy can be attributed to the lack of the extra 
dimension provided by 3D tracking, which offers a more 
comprehensive understanding of the zebrafish’s rich 
behavioural repertoire. Consequently, it was concluded 
that collecting and analysing 3D trajectories was a 
necessary overhead, despite the use of multiple cameras 
and an increased computational load. Furthermore, 
an additional finding emerged, indicating that a 3D 
approach requires fewer subjects compared to a 2D 
approach to obtain comparable statistical results. More 
recently, stereo-based 3D tracking has been instrumental 
in understanding moth behaviour in attraction to 
artificial light revealing that dorsal tilting is responsible 
for the seemingly erratic flight of the moth around a light 
source [16].

Tracking techniques have greatly advanced our 
understanding of mosquito behaviours. Butail et al. [8] 
(2012) used a stereo camera system to construct and 
validate 3D trajectories of wild Anopheles gambiae. 
This research revealed insights into male mosquito 
motion [17]. Building upon these findings, a more 
recent study [18] focused on classifying the disparities 
in mosquito behaviour between male and non-male 

Fig. 3  Schematic of a single-camera telecentric setup for measuring two orthogonal components of mosquito movement. The mosquitoes are 
back-lit from the LED on the left hand side and are observed as shadows on the camera
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(females and mating couples). By utilising explainable 
artificial intelligence (XAI), the study explored the 
dissimilarities among these classes, reinforcing existing 
knowledge about the behaviour of male mosquitoes 
within mating swarms. XAI showed that females and 
mating couples (non-males) tend to exhibit extreme, 
high and low, values for velocity and acceleration 
features (kinematic characteristics) perhaps reflecting 
the increased energy availability in females through 
blood feeding and the more chaotic movement of 
mating couples. The paper shows the utility of machine 
learning, and XAI techniques in particular, to extract 
behaviour insights from 3D trajectory information. 
Parker et  al. [19], examined mosquito behaviours 
around human baited bednets in the field using 2D 
imaging of Anopheles gambiae mosquitoes. Here, a 
pair of identical recording systems were used ‘side 
by side’ to expand the field of view and telecentric 
imaging was utilised (as shown in Fig. 3) to produce an 
accurate projection of two orthogonal components of 
motion onto the image plane. This research identified 
four distinct behavioural modes—swooping, visiting, 
bouncing, and resting—using bespoke algorithms 
based on entomologist expertise. Furthermore, it 
was observed that mosquitoes possess the ability to 
detect nets, including unbaited untreated ones. These 
findings contributed to the understanding of mosquito 
interaction with ITNs.

Tracking in combination with AI techniques has 
also been used to examine behaviours of other insects. 
Machraoui et  al. [20] used 2D imaging, tracking and 
feature extraction with supervised learning models to 
differentiate sandflies from other insects with accuracies 
of circa 88% for support vector machine and artificial 
neural network models on an optimised feature set.

In this article, we explore the relative merits of 
2D and 3D mosquito tracking when classifying and 
interpreting behaviours via machine learning. We 
present a comparative analysis among 3D trajectories, 2D 
telecentric (removing one orthogonal component) and 
2D single-camera data with perspective distortion, all 
derived from the same dataset, to assess the advantages 
and limitations of these tracking approaches. Analogous 
features are determined for each of these datasets, 
and the accuracy of the machine learning classifier 
provides a useful quantitative metric to assess the 
outcomes and XAI enables interpretation of behaviours. 
We hypothesise that 3D tracking and 2D telecentric 
tracking will return similar results, despite the loss of the 
additional information in the third dimension. We further 
hypothesise that a single-camera tracking system will 
return lower performance due to perspective effects and 
lens distortion. A deeper understanding of the strengths 

and weaknesses of 2D and 3D mosquito tracking will 
enable researchers to make informed decisions regarding 
experiment design. Overall, our research endeavours to 
advance the field of mosquito tracking and behaviour 
analysis via XAI, ultimately aiding in the development of 
more efficient and targeted mosquito control measures, 
leading to significant public health benefits.

Methods
A machine learning classifier has been established 
to classify male to non-male mosquitoes using 3D 
trajectories from mating swarms [18]. From this 3D 
dataset, corresponding 2D telecentric and 2D angular 
field of view information is derived to simulate the data 
obtained from these tracking systems. The sections below 
detail how the single-camera 2D telecentric and 2D 
angular field-of-view trajectories are determined and the 
corresponding features derived for the 2D data.

Dataset description
The trajectories of the mosquitoes utilised in this 
investigation were produced by Butail et  al. and 
were provided as 3D tracks following the processing 
steps outlined in [8]. The data were collected in 
Doneguebogou, Mali, for the years 2009–2011, during 
which wild Anopheles gambiae mosquito swarms were 
observed.

The dataset contained 191 male mosquito tracks over 
12 experiments as well as 743 mating couple tracks 
(where male and female mosquitoes mate in flight and 
are tracked together) over 10 experiments (Table  1). 
The male mosquito tracks were captured in swarms 
where no females were present, whereas couple tracks 
were generated from swarms that contained mating 
events. Prior to analysis, tracks were filtered based on 
duration, excluding those < 3  s. This decreased the size 
of the dataset but effectively eliminated tracks with low 
information content.

The experiments used to track the mosquitoes utilised 
a stereo-camera set up using phase-locked Hitachi 
KP-F120CL cameras at 25 frames per second. Each 
camera captured 10-bit images with a resolution of 

Table 1  Numbers of experiments and tracks for each class of 
mosquito

Mosquito class Number of 
experiments

Number of 
tracks

Number of 
tracks after 
filtering

Male 12 191 158

Mating couple 10 743 102

Female 1 6 4

Focal-male 1 6 6
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1392 × 1040 pixels. On-site calibration of the cameras 
was performed using a checkerboard and the MATLAB 
Calibration Toolbox [21]. The relative orientation 
and position of the cameras were established through 
extrinsic calibration, which involved capturing images of 
a stationary checkerboard in multiple orientations and 
positions. The camera’s height, azimuth, and inclination 
were recorded to establish a reference frame fixed to the 
ground.

Two‑dimensional projection of 3D trajectory data
To conduct a comparative analysis between 3D and 2D 
trajectories, two methods were employed to convert the 
3D dataset to a 2D one.

1.	 The first involves the omission of depth information, 
resulting in the plane of view parallel to the camera 
(YZ for this dataset). This method emulates a well-
calibrated 2D setup that uses telecentric imaging [19], 
i.e. the separation of the two lenses on the imaging 
side generates the telecentric condition and any lens 
distortion effects have been removed by appropriate 
calibration.

2.	 The second transformation method utilises a single 
lens camera model placed a distance away from 
the swarm to project the trajectories onto a 2D 
plane (the camera detector plane), simulating the 
transformation that occurs through a single-camera 
setup including perspective and lens distortion.

To perform the second transformation, the camera 
was modelled using OpenCV [22] requiring focal length, 
principal points, distortion coefficients, and the camera 
location and rotation. The 3D trajectories were projected 
onto the image plane using a perspective transformation, 
utilising the projectPoints function (https://​docs.​opencv.​
org/4.​x/​d9/​d0c/​group__​calib​3d.​html), represented by the 
distortion-free projection equation (Eq. 1):

where Pw is a four-element column vector in 3D 
homogeneous coordinates representing a point in the 
world coordinate system, p =

[

u v 1
]T is a three-

element column vector in 2D homogeneous coordinates 
defining the corresponding position (u, v) of a pixel in the 
image plane, R and t refer to the rotation and translation 
transformations between the world and camera 
coordinate systems, s is a scaling factor independent of 
the camera model, and A is the camera intrinsic matrix 
given by (Eq. 2).

(1)sp = A[R|t]Pw

with fx and fy the focal lengths expressed in pixel units, 
and cx and cy are the principal points on the detector 
in pixel units. Under these definitions the coordinates 
of the imaged point on the camera (u, v) are in pixels. 
Radial, tangential, and prism distortions are included 
by modifying the 3D point in camera coordinates, given 
by [R|t]Pw [22]. The camera intrinsic matrix values and 
distortion coefficients were based on the specifications 
provided by one of the camera models employed during 
the dataset generation process. These include the focal 
lengths ( fx = 1993.208 and fy = 1986.203 ), principal 
points ( cx = 705.234 and cy = 515.751 ) and distortion 
coefficients ( k1 = −0.088547 , k2 = 0.292341 , and 
p1 = p2 = 0 ) [8]. To ensure accurate representation 
of the swarm, the translation vector was adjusted such 
that the optical axis aligns with the centre of a cuboid 
enclosing the swarm, while the camera model was 
positioned at a predetermined distance from the swarm 
centre. As detailed by Butail et  al. [8], the camera was 
positioned between 1.5  m and 2.5  m away from the 
swarm. Therefore, in our simulated experiment, the 
camera model was positioned at 2  m from the swarm 
centre. Simulations were conducted with and without the 
lens distortion terms which showed that the vast majority 
(> 98%) of the distortion observed in the image was due 
to perspective at this range (for the camera intrinsic 
matrix values given above and a cuboid object extending 
1 m in each axis). For the single-lens 2D camera model, 
the coordinates of the image points in pixels (from Eq. 1, 
corresponding to the 3D trajectory coordinates) were 
used directly for feature calculation and classification.

To investigate the impact of different distances between 
the camera and the swarm on classifier performance from 
a single-lens 2D measurement, adjustments in the focal 
length of the camera model were accounted for such that 
the swarm occupied the same extent in the image. The 
thin lens equation (Eq.  3) was used to approximate the 
distance from the lens to the image plane as the object 
distance is varied. This equation relates the focal length, 
f  , to the distance of the object to the camera lens, u , 
and the distance of the camera lens to the image plane, 
v . Subsequently, by applying the magnification equation 
(Eq.  4), the magnification factor, M , was determined 
[23]. Based on the new distance between the object and 
the lens, the corresponding focal length was calculated 
and utilised in the camera intrinsic matrix (Eq. 2).

(2)A =





fx 0 cx
0 fy cy
0 0 1





(3)1
f
= 1

u + 1
v

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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Thereby, datasets for 3D, 2D telecentric, and 2D single 
camera at varying object distances were derived; an 
example is provided (Fig. 4).

(4)M = v
u

Machine learning framework
This study employs an anomaly detection framework, as 
detailed in [18], to classify male and non-male mosquito 
tracks. Track durations are unified by splitting them 
into segments of equal duration, and flight features 
are extracted per segment. In [18], tracks shorter than 
double the segment length were removed. However, this 
restriction is removed as filtering was unified to remove 

Fig. 4  Plots displaying the effect of the transformation methods on a single mosquito trajectory. a Original 3D track. b Two transformation methods 
applied to the trajectory: the 2D telecentric transformation with depth information ignored (blue) and the 2D camera model developed in OpenCV 
at 2 m (orange) and 15 m (green), respectively, whilst utilising the distortion coefficients from Butail et al. [8]

Fig. 5  Diagram outlining the machine learning pipeline used to classify male and non-male mosquito tracks



Page 7 of 16Qureshi et al. Parasites & Vectors  (2024) 17:282	

tracks < 3  s in duration. This unifies the datasets and 
makes downstream comparison like-for-like. Features 
are selected using the Mann-Whitney U test and 
highly correlated features are removed. Classification 
is performed using a one-class support vector machine 
(SVM) model trained on a subset of the male class. The 
model forms predictions on track segments, and then 
a voting method is employed to return the final class 
prediction of whole tracks (Fig. 5).

The 3D trajectory feature set is detailed in [18]. 
For 2D trajectory data, an equivalent feature set was 
employed resulting in 136 features of flight, with 
most feature calculations remaining consistent, albeit 
with the exclusion of the third axis. For instance, 
straightness (also referred to as tortuosity) is computed 
as the ratio between the actual distance travelled and 
the shortest path between the start and end positions. 
For 3D trajectories, this was calculated as:

However, in the 2D trajectory case, this was now 
calculated as:

The calculations for the remaining features were 
originally devised for 2D trajectories. However, in the 
context of 3D trajectories, projections onto the X–Y, 
Y–Z, and X–Z planes were computed, resulting in the 
derivation of a single value. An example of this is the 
calculation of curvature, which requires a single plane:

The study employed K-fold cross-validation. Two 
male trials were reserved for testing, while the 
remaining trials were used in training. All remaining 
classes (couples, females, and focal males) were used in 
testing. In the K-fold cross-validation process, different 
combinations of male trials were systematically rotated 
into the training set in each iteration, which is referred 
to as a ‘fold’. Performance metrics such as balanced 
accuracy, ROC AUC (area under the receiver operator 
curve), precision, recall, and F1 score were calculated 
with males and non-males considered as the positive 
class for metric computation.

The framework had various parameters that can 
be tuned including the machine learning model 
hyperparameters and the window size used to split 
tracks into segments. These were tuned together 

(5)S =

∑N
i=0

√

(xi+1−xi)
2
+(yi+1−yi)

2
+(zi+1−zi)

2

√

(xN−x0)
2+(yN−y0)

2
+(zN−z0)

2

(6)S =

∑N
i=0

√

(xi+1−xi)
2
+(yi+1−yi)

2

√

(xN−x0)
2+(yN−y0)

2

(7)ki =
ẋi ÿi−ẏi ẍi

(

ẋi
2+ẏi

2
)
3
2

in a cross-validated grid search attempting to 
maximise balanced accuracy. An independent tuning 
set containing three male trials and two couple 
trials, distinct from the dataset used to report the 
classification performance and named the modelling 
set, was used to obtain the best parameters. The grid 
search utilised in this study encompassed a more refined 
range of values with a smaller step size compared to 
[18], which is detailed in the supplementary material. 
The hyperparameter, ν, described as “an upper bound 
on the fraction of training errors and a lower bound 
of the fraction of support vectors”, was set to 0.2. This 
value was chosen to make strong regularisation of the 
model to allow large errors on the male class (the only 
class that is seen during training) to reduce overfitting.

Evaluation of transformed data
Various methods were used to assess the different 
datasets. The machine learning pipeline provides 
quantitative metrics for evaluating performance on the 
3D and 2D trajectory feature sets. Analysing feature 
correlations between 3D/2D datasets can reveal insights 
into the preservation of flight features within 2D 
trajectories. Correlations were computed by calculating 
the average absolute Pearson’s correlation coefficient 
across features between two datasets. Even though 
each dataset has specific window parameters that are 
identified during hyperparameter tuning, a fixed segment 
size and overlap were used to determine the correlation 
matrix to generate paired samples.

An alternative technique for analysing and comparing 
features is to visualise them through an embedding. 
Here, an embedding is a lower dimensional space 
that condenses the information content from a higher 
dimensional space. Uniform manifold approximation and 
projection (UMAP) [24] creates a visualisation that shows 
how the 2D/3D datasets cluster within the embedded 
feature space. Notably, UMAP is a dimensionality 
reduction technique that preserves the local relationships 
and global structure of the data, making it particularly 
suitable for this purpose.

Most importantly, it is necessary to deduce whether the 
machine learning models are utilising features correctly 
and behavioural insights gathered are consistent with 
those from 3D trajectories. By using SHapley Additive 
exPlanations (SHAP) values [25], it was possible to 
visualise and explain how the model made its predictions.

From [18], classification of male and non-male 
trajectories based on 3D trajectory features was 
demonstrated, alongside XAI to interpret the machine 
learning model. The SHAP plots have increased noise 
due to using field data and may exhibit a slight skew in 
the colour scale. To ensure robust interpretations, SHAP 
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scatter plots were also used to visualise the SHAP value 
distribution as a function of feature value.

Results
The 3D dataset was transformed into 2D telecentric and 
single-camera datasets at various distances from the 
swarm. Evaluating the machine learning framework’s 
performance at these distances (Fig. 6), the single-camera 
model closely matches the telecentric dataset as the 
camera moves farther from the object. For each distance, 

the tuned pipeline returns differing segment sizes and 
overlaps, which are also displayed.

Comprehensive results for the performance when 
using tuned pipeline parameters of the 3D dataset, 2D 
telecentric dataset, and 2D single-camera datasets with 
the camera placed at 2 m and 15 m are provided (Table 2). 
Across all datasets, the best performance obtained was 
from the 3D tracks with a balanced accuracy and ROC 
AUC score of 0.656 and 0.701. This performance may 
seem low, but the classifier is attempting to distinguish 
small differences in features of flight over segments of 
a few seconds and the data were captured in the field 

Fig. 6  Classification performance of the 2D single-camera model as the distance varies. Solid lines: 2D single-camera model; dashed lines: data 
from 2D telecentric model. a Balanced accuracy as distance varies. b ROC AUC score as distance varies. Both graphs also display the optimised 
segment size and overlap from hyperparameter tuning at each distance

Table 2  Performance metrics of each 3D/2D dataset when passed into the machine learning pipeline with the 95% confidence 
interval provided in brackets

3D data 2D telecentric 2D single camera (at 2 m) 2D single camera (at 15 m)

Training set accuracy (male) 0.776 (0.733–0.821) 0.820 (0.750–0.896) 0.891 (0.837–0.950) 0.825 (0.761–0.875)

Testing set accuracy (male) 0.636 (0.270–0.937) 0.708 (0.279–0.983) 0.704 (0.277–0.971) 0.713 (0.279–0.970)

Testing set accuracy (couple) 0.627 (0.594–0.674) 0.518 (0.406–0.594) 0.441 (0.348–0.565) 0.533 (0.442–0.630)

Testing set accuracy (female) 1.000 (1.000–1.000) 1.000 (1.000–1.000) 0.750 (0.750–0.750) 0.929 (0.750–1.000)

Testing set accuracy (focal male) 0.778 (0.583–0.833) 0.786 (0.667–0.833) 0.786 (0.667–0.833) 0.786 (0.667–0.833)

Balanced accuracy 0.656 (0.506–0.776) 0.635 (0.484–0.709) 0.588 (0.428–0.690) 0.642 (0.495–0.725)

ROC AUC​ 0.701 (0.618–0.763) 0.688 (0.543–0.805) 0.632 (0.452–0.774) 0.701 (0.550–0.808)

F1 (average) 0.635 (0.501–0.734) 0.597 (0.475–0.654) 0.537 (0.426–0.640) 0.604 (0.485–0.687)

F1 (male as positive class) 0.555 (0.334–0.718) 0.546 (0.317–0.672) 0.505 (0.313–0.641) 0.552 (0.323–0.695)

F1 (nonmale as positive class) 0.715 (0.662–0.756) 0.647 (0.601–0.677) 0.569 (0.525–0.642) 0.656 (0.607–0.699)

Recall (average) 0.656 (0.506–0.776) 0.635 (0.484–0.709) 0.588 (0.428–0.690) 0.642 (0.495–0.725)

Recall (male as positive class) 0.664 (0.381–0.921) 0.725 (0.386–0.961) 0.718 (0.363–0.939) 0.730 (0.386–0.95)

Recall (nonmale as positive class) 0.648 (0.616–0.692) 0.545 (0.438–0.616) 0.458 (0.370–0.575) 0.554 (0.459–0.651)

Precision (average) 0.642 (0.504–0.759) 0.629 (0.483–0.722) 0.587 (0.435–0.691) 0.635 (0.492–0.738)

Precision (male as positive class) 0.481 (0.299–0.606) 0.442 (0.271–0.538) 0.397 (0.275–0.514) 0.449 (0.281–0.568)

Precision (nonmale as positive class) 0.803 (0.665–0.931) 0.816 (0.676–0.956) 0.778 (0.595–0.937) 0.821 (0.677–0.944)
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under various conditions; hence, such performance in 
this application is notable. Generally, the single-camera 
model performs worse than the telecentric and 3D 
methods in both cases. At 2 m, the single-camera model 
fares 6.8% and 6.9% worse in balanced accuracy and ROC 
AUC compared to the 3D dataset, primarily because of 
perspective distortion. The telecentric and 3D methods 
exhibit similar performance with absolute percentage 
differences of 2.1% and 1.0% in balanced accuracy 
and ROC AUC, respectively. This indicates preserved 
tracking accuracy with a 2D telecentric dataset, i.e. two 
orthogonal displacement components quantified, despite 
a loss of depth information. Similarly, when the single-
camera model is placed farther away, its performance 
closely mirrors that of the 2D telecentric dataset with 
absolute percentage differences of 0.7% and 1.3% for 
balanced accuracy and ROC AUC respectively. Note that 

the performance metrics for the female and focal male 
classes are not conclusive as these results are based on a 
limited number of tracks.

A closer analysis of individual fold performance 
across the datasets revealed additional understanding. 
As reported in [18], poorly performing folds were those 
that were tested on abnormal trials where mosquito 
type was different (Mopti form instead of Savannah 
form) and swarm location differed (over bundles of 
wood rather than bare ground). These conditions could 
alter mosquito trajectory features, potentially causing 
them to fall outside the decision boundary of the single-
class model. Conversely, folds including abnormal 
trials in training consistently performed best. This 
indicates potential overfitting to the variability within 
their features, leading to accurate classifications for 
male mosquitoes but reduced accuracy for non-male. 

Fig. 7  Confusion matrices of each dataset: a original 3D dataset, b 2D telecentric dataset, c 2D single-camera model at 2 m, and d 2D 
single-camera model at 15 m
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This trend held for both the 2D telecentric and single-
camera models at 15  m. However, the 2 m single-
camera model displays the opposite behaviour, with the 
best performance on folds containing abnormal trials 
in testing. This implies that the perspective distortion 
introduced by the camera at this distance is affecting 
the feature values and their variability, resulting in 

unexpected performance variations across different 
trials.

The performance of these models can be visualised 
through confusion matrices (Fig. 7) and receiver-operator 
characteristic (ROC) curves (Fig.  8). The confusion 
matrices display the predictions of all folds with the 
percentage of predictions labelled in each section of the 
matrix. The ROC curves depict the performance of a 

Fig. 8  Receiver-operator characteristic (ROC) curves of each dataset. The dark blue line displays the average ROC curve across all folds, the light 
blue lines show the ROC curve at each fold and the grey shadow depicts the standard deviation. Within the figure, (a) displays the original 3D 
dataset, (b) the 2D telecentric dataset, (c) the 2D single-camera model at 2 m, and (d) 2D single-camera model at 15 m
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binary classifier by plotting the trade-off between true- 
and false-positive rate.

Analysing the correlation between features 
from different datasets can reveal insights into the 
preservation of flight features in 2D trajectories. Datasets 
were generated at various distances using the same 
segment size and overlap, such that correlation can be 
computed between paired samples. To compute the 
correlation, each of the datasets was pairwise correlated 
to produce the matrix (Fig.  9). Overall, utilising a 2D 

telecentric setup preserves more features compared to 
the 3D dataset, with an average correlation of 0.83. Shape 
descriptors show the lowest correlation because of depth 
loss, which is expected. Conversely, a single-camera setup 
compromises tracking accuracy, resulting in lower feature 
correlation compared to a 3D stereoscopic system. The 
average correlation between the 2D single camera at 
2  m with the 3D dataset and the 2D telecentric system 
is 0.72 and 0.87, respectively. However, positioning the 
single camera at 9  m significantly improves correlation. 
Average correlation values increase to 0.80 and 0.96 
compared to 3D and 2D telecentric datasets, respectively. 
These results are expected as increasing camera-swarm 
distance reduces the perspective distortion effect, 
thereby resembling telecentric setup data and enhances 
feature preservation.

The UMAP representation (Fig.  10) provides a clear 
visualisation of the disparities between the datasets. The 
SHAP plots of the best performing folds for each model 
were generated and are provided in the supplementary 
material. This includes SHAP summary plots for the 
best performing folds for the 3D, 2D telecentric, and 
2D single-camera model at 2 m and 2D single camera 
model at 15 m datasets, respectively (Additional file  1: 
Figs. S1-S4). The supplementary material also includes 
SHAP summary plots where only the common features 
across each model are selected and sorted alphabetically 
(Additional file  1: Figs. S5–S8). SHAP scatter plots for 
the third quartile of angle of flight feature are provided 
for each dataset (Fig. 11). This feature was chosen as an 
example to illustrate the impact that each camera system 
has on SHAP and feature values. In this figure, each point 
represents a segment, with its corresponding normalised 
feature value on the x-axis and its SHAP value on the 
y-axis. A histogram of the segment feature values is 
provided as a grey shadow.

The feature selection process for each dataset selects 
slightly different types of features. Among the datasets, 
the numbers of selected features are as follows: 61 for the 
3D dataset, 34 for the 2D telecentric dataset, 42 for the 
2D single-camera dataset at 2 m, and 35 for the 2D single-
camera dataset at 15 m. Notably, the 3D dataset contains 
more features as it includes some feature calculations 
projected in the X–Y, Y–Z,, and X–Z planes which are 
not present with 2D data. Despite these differences, a 
significant portion of features is shared between them. 
Specifically, 85% of the features are common between 
the 2D telecentric and 2D single-camera datasets at 2 m, 
while 97% of the features are common between the 2D 
telecentric and 2D single-camera datasets at 15 m. These 
observations further reaffirm that the 2D single-camera 
dataset at 15  m can effectively emulate a 2D telecentric 
system. It is important to note that across all datasets, 

Fig. 9  Pairwise correlation matrix between each dataset. The Pearson 
correlation between the same features for each pair of datasets 
is computed, with the average of the correlations taken to return 
a final value for the dataset pairs

Fig. 10  UMAP representation of each of the datasets
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only a few shape descriptors are selected, consistent with 
the findings from [18].

Discussion
This study compares 3D and 2D trajectory datasets 
simulating various imaging techniques. Performance 
metrics were obtained via a one-class machine learning 
classifier on field data of male and non-male mosquitoes 
in a mating swarm. Generally, the 3D and 2D telecentric 
datasets performed best, with the exception of some 
metrics from the 2D single-camera model at 15  m. 
Performance with a single camera at a great distance 
(with a suitable focal length lens) approached that of the 
telecentric dataset. However, at a typical distance for 
insect tracking of around 2  m, performance showed an 
average decrease of about 0.05 across all metrics on the 
test datasets.

Earlier, we hypothesised that 2D telecentric imaging 
data would perform similarly to stereoscopic 3D 
data despite the loss of one axis of information. We 
anticipated that a single-camera model would be 
less effective at short distances compared to larger 
distances, where trajectory data align more closely with 
telecentric imaging (with larger focal length imaging 
lenses). The machine learning classifier performance 
metrics confirm both hypotheses. The implication 
of the first hypothesis is that the necessary features 
to differentiate the behaviour of male compared to 
non-male mosquitoes are present in two orthogonal 
components of motion as well as in a complete three-
dimensional measurement. This is different from 
what we normally consider to be the accuracy of a 
measurement. In terms of metrology, accuracy is 
the difference between a measurement and the true 
value. The speed of a mosquito requires all three 
velocity components for accurate determination. The 

Fig. 11  SHAP scatter plots for the third quartile of angle of flight feature. Within the figure, (a) displays the original 3D dataset, (b) the 2D telecentric 
dataset, (c) the 2D single-camera model at 2 m, and (d) 2D single-camera model at 15 m
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findings demonstrate that features extracted from 
2D orthogonal, i.e. independent axes, measurements 
can characterise behaviour comparably to 3D 
measurements (Table 2).

Single-camera 2D data are typically obtained without 
calibrating for geometric distortions introduced by the 
imaging lens. Distortion increases linearly with radial 
distance from the optical axis and is a power law with 
respect to numerical aperture [26] and the angular 
field of view increases as the camera is moved closer to 
the scene of interest. Hence, close range imaging yields 
higher distortion compared to distant imaging for the 
same field of view. Perspective effects at close range 
mean that the two components of position measured at 
a detector are also a function of object position along 
the optical axis and the magnitude increases with radial 
distance (as for lens distortion). Hence, it appears that 
classifier performance is impacted by perspective and 
distortion aberrations, particularly noticeable at closer 
distances. Conversely, positioning the camera further 
away reduces perspective distortion, leading to more 
reliable interpretations akin to 2D telecentric data. 
However, by tuning the parameters for the machine 
learning pipeline at each distance, the pipeline partially 
accommodates for the distortion effects introduced at 
smaller distances. The changing segment size for each 
distance, as determined by the tuning dataset, thus plays 
a strong role in the classification performance leading to 
some of the variations in balanced accuracy and ROC 
AUC as distance increases. The figure (Fig.  6) captures 
these variations and also depicts the tuned segment 
size and overlap at each distance. Differing segment 
sizes capture different scales of behaviour and would 
lead to variations in feature values and thus differences 
in classification performance. Intriguingly, this study 
found that achieving comparable performance between 
a single-camera 2D measurement and the corresponding 
2D telecentric assessment occurs at a range of 9–10  m. 
The pipeline parameters after 9 m remain consistent and 
are equivalent to the telecentric system, displaying its 
effectiveness at emulating a telecentric camera system.

The correlation analysis highlights differences between 
the camera systems. The single-camera model at 15  m 
correlates strongly with 2D telecentric data (0.96), while 
2D telecentric data correlate well with the 3D dataset 
(0.83). In the UMAP representation (Fig.  10), features 
from the 2D single camera at 2  m cluster towards the 
upper left corner, suggesting less reliable and inconsistent 
object tracking at close range. SHAP scatter plots 
for the angle of flight, third quartile, feature (Fig.  11) 
corresponding to the four different imaging setups 
demonstrate similarity among the 3D, telecentric, and 
single camera at 15 m, whereas the single camera at 2 m 

has increased noise and overlap between the classes 
across some feature values. This feature describes the 
upper quartile of the change in angle of flight distribution 
within a track segment, where high values indicate a 
large deviation. It can be argued that this feature for the 
3D dataset shows the clearest separation between the 
male and non-male classes, while overlap occurs in other 
setups. In the single camera at 2 m SHAP scatter plot, the 
histogram displays a distorted distribution of normalised 
feature values compared to the other histograms, 
further illustrating the impact the distortion that camera 
systems at close distance bring. SHAP summary plots 
in the supplementary information confirm these trends 
indicating subtle differences in feature contributions 
and a slight skew towards male predictions with close-
range single-camera models. This phenomenon can 
be attributed to the perspective distortion introduced 
in trajectories that are constructed by a single-camera 
model, resulting in highly variable features across all 
classes. Consequently, the distinct separation between 
classes diminishes for 2D imaging at close range.

The study primarily focused on the Y–Z view directly 
imaged on the camera detector, but the other two 
orthogonal views were assessed (Additional file  1: 
Figs. S12-S13). Notably, the machine learning model 
performance of these additional views were higher 
than that of the original view that has been discussed. 
Specifically, the overhead view X–Y, which captures 
the distinctive circular motions of swarming male 
mosquitoes and the more erratic behaviours of mating 
couples, likely contributed to its higher effectiveness. 
The X–Z plane, observing the swarm from the other 
side view, may perform better because of the increased 
uncertainty of X-positional data in combination with 
perspective, which may amplify the depth information 
(e.g. through increased variability in certain features). 
Mating couple tracks move less in the depth plane 
and thus lead to bias towards one of the classes. Both 
these views utilise the depth axis that, while derived, 
introduces significant noise, rendering these findings less 
reliable. During the generation of the dataset, the camera 
system is placed 1.5–2.5  m away from the swarm and 
the baseline is 20  cm [8], meaning the angle subtended 
by the cameras at the swarm in the stereoscopic setup 
varies between 4.6 and 7.6 degrees. According to [27] for 
a related stereoscopic imaging setup, with an angle of 5 
degrees, the uncertainty in depth displacements is > 11 
times the uncertainty parallel to the detector plane. With 
an angle of 7.5 degrees, this uncertainty is > 7 times the 
uncertainty parallel to the detector plane. As a result, the 
accuracy of the depth component (X) is 7–11 times worse 
than the other measurement components, and thus these 
results from the other views are unreliable.
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Overall, the 3D dataset demonstrates superior 
performance, followed by the telecentric dataset. 
Both setups can be configured in a small experimental 
footprint compatible with experimental hut trials 
in sub-Saharan Africa. Stereo 3D setups require 
alignment of the two cameras on the same field of view 
and in  situ calibration. Two-dimensional telecentric 
setups require large aperture optics typically achieved 
with plastic Fresnel lenses [19], the same size as the 
required field of view, and careful alignment of the 
separation between the camera and large aperture 
lenses. Single-camera 2D imaging is experimentally 
simpler and can be done with lower camera to object 
distance within the size of a typical experimental hut 
but then generate the distortions described above and 
lower performance in machine learning classification 
and hence difficulties in behaviour interpretation. 
Two-dimensional imaging at longer range becomes 
problematic for practical reasons, the image path 
would extend outside a typical dwelling, and it is 
difficult to prevent occlusion by people and animals 
during recordings that can take several hours. Also, 
with large focal length lenses, outdoor implementation 
in low light conditions can be particularly problematic 
as the optical efficiency reduces, an effect that has not 
been investigated here. It is also recognised that the 
calibration process for stereoscopic imaging naturally 
means that trajectories are obtained in physical 
distance units, e.g. mm; telecentric setups can also 
be relatively easily calibrated as position data parallel 
to the camera detector remains the same irrespective 
of an object’s position along the optical axis. The 
resulting machine learning models can therefore be 
applied to results of other, equally well calibrated 
experiments that attempt to elicit similar behaviours. 
Two-dimensional single-camera measurements are 
obtained in pixels from the detector—whilst known 
artefacts could be placed in the field of view for 
calibration, manual assessment of whether trajectories 
are in the appropriate depth plane would need to be 
made. Hence, the machine learning models from 2D 
single-camera measurements are less useful than the 
calibrated data from stereoscopic 3D or telecentric 2D 
setups.

There are certain limitations with this study that 
should be acknowledged. First, the datasets used 
for comparing the performance of different tracking 
systems were all simulated, except for the 3D dataset. 
The 3D data used for simulating the other tracking 
systems were gathered from mosquito swarms, 
where their movement revolves around a central 
point, resulting in generally symmetric trajectories 
(especially in both horizontal axes). As a result, these 

findings may not be applicable in studies that have 
unsymmetrical movements (e.g. mosquito flight 
around bednets [19]). The orientation of the 2D 
datasets is to primarily capture the vertical axis, with 
respect to the ground, and one horizontal axis. It is 
probably important for 2D datasets to include the 
effect of gravity and one other orthogonal axis. Were 
a trajectory to be along a linear axis not captured by a 
2D imaging system, then clearly it would fail to provide 
useful information. However, the mating swarm data 
used here [8], data from field tests tracking mosquitoes 
around human baited insecticide treated nets [28] or in 
odour stimulated wind tunnels tests [29], mosquitoes 
do not exhibit straight line flight behaviours. The 3D 
data itself were gathered from wild mosquito swarms 
and as such the trajectories may already contain noise 
that may reduce performance across all tracking 
simulations. To further validate these findings, future 
trials of the various tracking systems should be tested 
by generating new experimental data from each 
system in diverse scenarios and then comparing their 
trajectories to determine whether the same behaviours 
and trends between the 3D and 2D datasets are 
observed.

Conclusions
Accurately tracking mosquitoes, or more generally 
insects, is a difficult task that requires care to be 
taken at many stages. This includes considering the 
experimental conditions, the video recording equipment, 
and the software used to identify insects from videos. 
Nonetheless, accurate tracking of mosquitoes could lead 
towards improved understanding of their behaviours 
that may influence disease transmission intervention 
mechanisms. The results of this study imply that 2D 
telecentric and 3D stereoscopic imaging should be the 
preferred imaging approaches to adequately capture 
mosquito behaviour for machine learning analysis. Both 
of these approaches are compatible with laboratory and 
field-based studies, but it should be recognised that 
2D telecentric imaging is less complex and the data 
more straightforward to process. Single-camera 2D 
imaging over large, metre-scale field of view, although 
experimentally easier and needing less expensive 
equipment, should be avoided because of the distortion 
in the results and subsequent difficulty in interpretation. 
Nonetheless, if a single camera is placed at a considerable 
distance from the object of interest, achieving accurate 
interpretations of behaviour may be feasible. However, 
this demands expensive long focus lenses and a strong 
light source to effectively record trackable mosquitoes.
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