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Abstract 

Background  Dengue fever poses a significant global public health concern, necessitating the monitoring of Aedes 
mosquito population density. These mosquitoes serve as the disease vectors, making their surveillance crucial 
for dengue prevention. The objective of this study was to address the difficulty associated with identifying and count-
ing mosquito eggs of wild strains during the monitoring of Aedes albopictus (Diptera: Culicidae) density via ovitraps 
in field surveys.

Methods  We constructed a dataset comprising 1729 images of Ae. albopictus mosquito eggs from wild strains 
and employed the Segment Anything Model to enhance the applicability of the detection model in complex environ-
ments. A two-stage Faster Region-based Convolutional Neural Network model was used to establish a detection 
model for Ae. albopictus mosquito eggs. The identification and counting process involved applying the tile overlap-
ping method, while morphological filtering was employed to remove impurities. The model’s performance was evalu-
ated in terms of precision, recall, and F1 score, and counting accuracy was assessed using R-squared and root mean 
square error (RMSE).

Results  The experimental results revealed the model’s remarkable identification capabilities, achieving precision 
of 0.977, recall of 0.978, and an F1 score of 0.977. The R-squared value between the actual and identified egg counts 
was 0.997, with an RMSE of 1.742. The average detection time for a single tile was 0.48 s, which was more than 10 
times as fast as the human–computer interaction method in counting an entire image.

Conclusions  The model demonstrated excellent performance in recognizing and counting Ae. albopictus mosquito 
eggs, indicating great application potential. This study offers novel technological support for enhancing vector con-
trol effectiveness and public health standards.
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Background
Dengue fever, a febrile illness caused by the dengue virus 
transmitted by Aedes aegypti or Aedes albopictus (Dip-
tera: Culicidae) mosquitoes [1], is a prevalent and rapidly 
spreading mosquito-borne disease [2]. Characterized 
by high incidence and strong infectiousness [3], dengue 
fever poses a severe threat to public health and safety, 
with 2.5 billion people at risk of dengue infection annu-
ally [4], presenting significant challenges to both eco-
nomic development [5] and public health [6]. With the 
advancement of global phenomena [7] such as air travel, 
maritime trade [8], climate change [9, 10], and urbani-
zation [11, 12], mosquitoes can travel long distances 
in a short time, leading to an increasing risk of dengue 
infection and expanding geographic distribution annu-
ally [13, 14]. Although a dengue fever vaccine has been 
widely authorized, its dissemination has been slow due 
to safety concerns identified in recipients [15], along with 
the absence of licensed antiviral drugs currently for treat-
ing dengue infection [16]. Therefore, preventing dengue 
infection is an urgent public health issue that needs to be 
addressed globally.

Vector control has proven to be an effective method 
for preventing dengue infection [17]. By limiting mos-
quito–human interactions and controlling mosquito 
populations, the spread of the virus can be curtailed. The 
effectiveness of vector control depends on the monitor-
ing of vectors. Research has shown that the reproduc-
tive capacity of female mosquitoes can provide valuable 
information for mosquito vector monitoring, such as 
estimating population density [18] and identifying poten-
tial breeding sites [19]. Monitoring Aedes mosquitoes 
can effectively guide the allocation of resources to con-
trol mosquito density, thereby preventing the spread 
of dengue fever [20]. Among the various non-chemical 
methods for monitoring Aedes mosquitoes, ovitraps are 
considered an effective way to monitor mosquito popu-
lations because of their low cost, ease of operation, and 
standardization [21], and have been widely applied in 
regions such as Malaysia [22], Indonesia [23], and Rome 
[24]. Ovitraps, which collect mosquito eggs, can quantify 
the reproductive ability of female mosquitoes. By analyz-
ing the number and behavior of mosquito eggs, the popu-
lation size of mosquitoes can be accurately estimated, 
thereby assisting in decision-making for vector control 
[25]. However, mosquito eggs collected by ovitraps typi-
cally require identification in the laboratory using tools 
such as microscopes [26]. Compared with adult mosquito 
identification, egg identification demands greater pro-
fessional skills [27, 28]. In most cases, the identification 
and counting of mosquito eggs are performed manu-
ally, resulting in a high workload, low efficiency, and a 
degree of subjective error [29, 30]. Therefore, optimizing 

the process of egg identification and counting, avoiding 
manual errors, and improving efficiency are crucial for 
the effective surveillance of Aedes mosquito density and 
vector control decision-making.

Previous studies have explored methods for enhancing 
the counting of mosquito eggs by collecting images and 
utilizing computer-assisted artificial identification and 
counting [29]. This approach, which involves human–
computer interaction, is at least twice as fast as tradi-
tional manual counting via magnifiers or microscopes. 
While this method enables workers to perform counting 
remotely, it is still heavily dependent on manual labor. 
The widespread application of digital image process-
ing technology further enhances the counting process 
[31–33]. Since RGB (red,  green,  blue) images provide 
limited computational information [34], they were usu-
ally converted to other color systems such as HSV (hue, 
saturation,  value) [31], HSL (hue, saturation, lightness) 
[33], YIQ (luminance, in-phase chrominance, quadra-
ture chrominance) [33], and International Commission 
on Illumination (CIE) 1976 L*a*b* (CIELAB) color space 
[32]. The image segmentation was then used to distin-
guish between mosquito eggs and the background. The 
determination of the threshold for image segmentation is 
crucial to the entire process. Manual adjustment of the 
segmentation threshold requires operators to have prior 
experience, and different images may require significantly 
different thresholds [35]. Additionally, the collected fil-
ter paper may darken due to bacterial or fungal growth, 
or soaking in sewage, complicating the determination 
of the threshold. To address the problem, researchers 
have employed optimization algorithms to determine 
the thresholds, such as grid search parameter optimiza-
tion [31], minimizing the measures of fuzziness [33], and 
Gabor wavelets [36].

Rapid advancements in machine learning have also 
found widespread application in mosquito egg count-
ing in recent decades [37]. For instance, an early study 
by Gusmão et  al. [32] employed k-means clustering to 
differentiate mosquito eggs, backgrounds, and impuri-
ties based on image information from the CIELAB color 
system. In these studies, after the mosquito egg area is 
extracted through threshold segmentation, the number 
of mosquito eggs is determined by comparing the total 
pixel count occupied by the eggs to the pixel count of 
individual eggs. Some other studies have implemented 
the process using existing image processing software 
such as ImageJ [38], ICount [35], or self-developed tools 
like Egg-Counter [39] and MECVision [40], to achieve 
initial automated counting of mosquito eggs. All these 
studies base their identification and counting of mos-
quito eggs on the pixel scale, which has a natural advan-
tage when egg density is high and overlapping occurs, as 
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it does not require consideration of individual egg mor-
phology. However, this method has certain drawbacks. 
When samples are collected on filter papers placed in the 
field, contaminants such as plant fragments, sand, and 
insect corpses may also be collected alongside mosquito 
eggs. As a result, the segmented mosquito egg pixels may 
contain more than just mosquito eggs, making it difficult 
to obtain accurate information on true positives and true 
negatives. Although most studies have optimized results 
by setting size thresholds or manually making correc-
tions to remove impurities, this introduces uncertainty of 
human operations and the thresholds significantly affect 
its accuracy.

Another type of machine learning approach is based on 
object-scale operations. Image segmentation resolves the 
category attribution of each pixel, while object detection 
combines segmentation with knowledge to determine 
the category and location of the target [41]. AlexNet [42] 
has achieved a significant breakthrough in the field of 
image recognition, highlighting the capabilities of con-
volutional neural networks (CNNs), which have been 
widely applied in the fields of medicine and public health 
[43, 44]. Object detection has been used extensively for 
detecting and identifying various insects, such as eco-
nomically significant silkworms [45] and crop-destroying 
pests [46]. In mosquito vector monitoring, object detec-
tion is applied to all life stages of mosquitoes (i.e., eggs, 
larvae, pupae, and adults), with most research focusing 
on larvae and adult stages. Object detection has shown 
significant potential in mosquito vector monitoring, 
whether through single-stage algorithms such as Single 
Shot MultiBox Detector (SSD) [47] and You Only Look 
Once (YOLO) [48] for detecting mosquito larvae, or two-
stage algorithms like Faster Region-based Convolutional 
Neural Network (Faster R-CNN) for identifying adult 
mosquitoes [49]. Some researchers have employed object 
detection to identify the mosquito eggs. For example, 
Javed et  al. [50] collected 100 macro- and microimages 
of laboratory strains of mosquito eggs using cameras and 
microscopes, respectively, and detected eggs via Mask 
R-CNN, with precision, recall, and F1 score above 0.9 at 
both the macro and micro levels. While the majority of 
studies are based on laboratory strains, some research-
ers have made efforts on wild strains. De Santana et  al. 
[51] employed Region-based Fully Convolutional Net-
works (R-FCN) to identify the field-collected mosquito 
eggs, and the classification accuracy reached 91%. Garcia 
et al. [52] performed image preprocessing prior to object 
detection, where RGB and CIELAB information was used 
to distinguish between mosquito egg pixels and non-egg 
pixels, and small-sized objects were excluded from the 
process. The R-CNN was subsequently employed for 
detection based on the classification results, achieving a 

detection rate of 91% at an intersection over union (IoU) 
of 0.3. Although the study highlighted the removal of the 
background outside the filter paper prior to detection, 
the method primarily deals with the black areas which 
originated during the image acquisition with the magni-
fication lens. Its effectiveness in removing more complex 
backgrounds remains to be further examined.

Despite the high precision and recall reported in these 
studies, several shortcomings remain. The image pre-
processing process depends on manual intervention 
using third-party image processing software, and the 
parameters applied lack generalizability. Furthermore, 
irrespective of pixel or object scale, the majority of the 
collected images represent laboratory-collected mos-
quito eggs, which may lead to lower detection rates when 
identifying images collected from wild environments in 
real-world applications.

This study aims to address the automatic identifica-
tion and counting of Ae. albopictus mosquito eggs from 
wild strains. We collected a large number of samples 
from field surveys for training the object detection model 
and standardized the image preprocessing procedures. 
The Segment Anything Model (SAM) [53], an artificial 
intelligence (AI)-based image segmentation model, was 
employed to effectively solve the problem of complex 
background interference, facilitating broader application 
scenarios. Then the Faster R-CNN, an AI-based object 
detection model, was employed to learn sufficient infor-
mation about objection. For identification, we employed 
a tile-overlapping image-slicing method, which not only 
increased the pixel ratio of egg targets but also avoided 
the impact of mosquito eggs being segmented during the 
identification process. Additionally, we optimized the 
identification results through morphological filtering to 
ensure the accuracy and reliability of identification and 
counting. Our method demonstrated strong capabilities 
in recognition and counting.

Methods
Figure 1 illustrates the study methodology. After images 
of Ae. albopictus mosquito eggs from field surveys were 
collected via a camera, manual labeling was carried out 
to create the necessary tags for training. The SAM was 
used to segment the images into the filter paper area and 
non-filter paper area, effectively removing the complex 
backgrounds and retaining only the filter paper area. 
We designed a point prompt generator to obtain a point 
prompt for SAM. Compared with other algorithms that 
require parameter training, the SAM can be used directly 
without training, demonstrating strong robustness. The 
dataset was subsequently divided into training, valida-
tion, and testing sets at a 6:2:2 ratio, and the training and 
validation sets were processed through segmentation. 
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Then we trained a Faster R-CNN model based on image 
slices. Finally, the tile overlapping method was used to 
identify Ae. albopictus mosquito eggs, and morphological 
filtering was applied to count the identified eggs.

Aedes albopictus mosquito egg collection
The ovitrap is a plastic container with a capacity of 
approximately 200 ml [26] and is equipped with a black 
lid with holes. This well-designed device not only offers 
a ventilated and shaded environment for mosquitoes 
but also prevents their escape once they enter. We 

added water to the container, which attracts mosqui-
toes to lay their eggs on filter paper [54]. The ovitrap 
is typically placed in bushes near human populations 
and sheltered from wind and rain to collect mosquito 
eggs. Such an environment, along with the presence of 
small water bodies in the ovitrap, is more suitable for 
Aedes mosquitoes to lay their eggs. The wild-strain 
Ae. albopictus mosquito eggs collected in this study 
were obtained from the Minhang District of Shanghai, 
China, with the collection period spanning from June 
to August 2023.

Fig. 1  Experimental procedure
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Image acquisition
The images of Ae. albopictus mosquito egg filter papers 
were captured with the aid of a camera and tripod. A 
Fujifilm X-S10 mirrorless digital camera with 26.1 million 
pixels, equipped with an autofocus and image stabiliza-
tion macro lens and a tripod, was used to form the image 
acquisition system. To prevent the filter paper from wrin-
kling, it was placed on a horizontal plastic board (or other 
flat surfaces) during shooting. This ensured that the filter 
paper was on the same focal plane, allowing each egg to 
be clearly visible in the images. A total of 1729 JPG for-
mat images were collected in this study, with each image 
measuring 6240 × 4160 pixels and an approximate file 
size of 10 megabytes. Compared with laboratory strains, 
the objects on the filter paper from wild strains are more 
complex, including Ae. albopictus mosquito eggs, and 
also contain a large amount of impurities such as plant 

debris, gravel, and other insects. The same applies to the 
background area beyond the filter paper. The color of 
the filter paper might also darken due to various factors, 
including the growth of bacteria or fungi, and prolonged 
exposure to sewage (Fig. 2).

Dataset construction
We constructed a dataset of images of Ae. albopictus 
mosquito eggs from the wild strain. On the basis of the 
collected images of the Ae. albopictus mosquito eggs, we 
used LabelImg [55], a software widely applied in anno-
tating images for object detection, to manually annotate 
the eggs in the images, creating egg labels in Pascal VOC 
format. The details of these annotations were stored in 
XML format, with the “name” field consistently labeled 
“egg.” We eliminated targets that were difficult to confirm 
manually to ensure that the objects being targeted were 

Fig. 2  Overview of Ae. albopictus mosquito egg images. A Full view of the image. B Darkened filter paper with slight damage to the edges. C Ae. 
albopictus mosquito egg. D Impurities: plant debris. E Impurities: other insects. F Impurities: gravel
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all correct. Additionally, we used BG-Trap for monitoring 
within the same research area, and the monitoring results 
included only Culex pipiens pallens and Ae. albopictus, 
which is consistent with the conclusions of relevant stud-
ies [56]. The eggs of these two mosquito species show dis-
tinct differences. The Cx. pipiens pallens mosquito eggs 
are conical in shape and are laid in rafts on the water sur-
face. In contrast, Ae. albopictus mosquito eggs are gen-
erally elliptical and are laid individually at the bottom of 
the water. Furthermore, we also identified the adult mos-
quitoes collected in the ovitraps, and the results showed 
that they were all Ae. albopictus. These findings indicate 
that there are no other mosquito species in the research 
area whose eggs are similar to those of Ae. albopictus. 
Through Python code, the manually annotated data-
set was divided into a training set (60%), a validation set 
(20%), and a testing set (20%).

Image preprocessing
Extracting the region of interest
Given the diversity of image acquisition environments 
and the complexity of backgrounds beyond the fil-
ter paper, this study employs the SAM to extract the 
filter paper part of images. This approach addresses 
complex backgrounds and reduces their interference 
with the detection of mosquito eggs. The SAM is a 
versatile image segmentation model based on a vision 

transformer architecture, capable of segmenting a wide 
variety of objects without the need for task-specific 
training. Moreover, the SAM supports three types of 
prompts—point, box, and text—making it suitable for 
new tasks and capable of zero-shot learning, thereby 
enhancing its ability to handle complex backgrounds.

In this study, we developed a point prompt generator 
for obtaining a point-type prompt. The basic principle 
is as follows (Fig. 3): First, the width and height of the 
input image are extracted, and a square region with a 
side length of 500 pixels is determined in the center. 
The size of the square is adjustable, but should be small 
enough to be located within the filter paper. This square 
area is then binarized. To minimize the impact of the 
binarization threshold on the results, an erosion opera-
tion is performed to enlarge the pixels occupied by 
impurities, making the point candidate area more pre-
cise and improving robustness. Finally, one point is ran-
domly selected from the candidate area to serve as the 
prompt. Using the point prompt in the SAM, a mask of 
the filter paper and the center coordinates of the mask 
(x0, y0) is obtained. The image is then cropped into a 
square centered on the filter paper with dimensions of 
4160 × 4160 pixels, maintaining the same height as the 
original image. Subsequently, the original annotations 
are modified by subtracting the offset (x0 − 2080) from 
the horizontal coordinate x0, aligning the annotations 
with the cropped image.

Fig. 3  Process of extracting the region of interest
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Image tile
In the Microsoft Common Objects in Context (MS-
COCO) evaluation metrics, objects with dimensions 
smaller than 32 × 32 pixels are defined as small objects 
[57]. Owing to the limited classification information pro-
vided by small objects and the higher precision required 
for localization, improving detection accuracy is chal-
lenging. Generally, a smaller proportion of the detection 
target in the image results in lower detection accuracy 
[58]. To increase the pixel ratio of mosquito eggs, we 
divided the images of the training and validation sets into 
non-overlapping tiles (with a size of 1040 × 1040 pixels) in 
both the horizontal and vertical directions, and removed 
the tiles with “fragmented” or no eggs (Fig. 4). After divi-
sion, the training and validation sets contain 8844 and 
2922 images, respectively, maintaining the original 6:2 
dataset split ratio.

The use of non-overlapping tiles can prevent the same 
eggs from appearing in multiple images, thus reducing 
data redundancy. However, the non-overlapping seg-
mentation method may result in eggs at the edges being 
fragmented, which might lead to them being ignored or 
counted repeatedly during the identification process (we 
exclude these eggs during training). Therefore, when test-
ing the model’s identification capabilities with a test set, 
we use a tile overlapping method (Fig. 4), which is used 
to divide the images into overlapping slices. Unlike direct 
segmentation, this method extends 30 pixels outward 
from the segmentation point to ensure that when an egg 
is partially segmented in a tile, it can be fully presented 
in other tiles. The size of expended pixels depends on the 
average length of eggs. During the testing phase, both the 
input and output are complete images, with the segmen-
tation and extending processes performed automatically 
by the Python code. The code records the coordinates of 
the prediction boxes on each tile and then restores these 

prediction boxes back to their original positions in the 
complete image. This eliminates duplicate predictions 
with an IoU greater than 0.5 using non-maximum sup-
pression (NMS) to avoid repeated identification of the 
same eggs.

Model training and testing
Training
This study employs the advanced Faster R-CNN model, 
which is particularly effective in identifying small tar-
get objects [59], to identify the Ae. albopictus mosquito 
eggs. This model evolves from R-CNN and Fast R-CNN, 
utilizing the Region Proposal Network (RPN) to replace 
the selective search (SS) algorithm, achieving end-to-end 
training. The model consists of four modules: Convolu-
tional Layers, Region Proposal Network, ROI [region of 
interest] Pooling, and Classification. Convolutional Lay-
ers are used for feature extraction, with common back-
bones including VGG16, ZFNet, and ResNet; the Region 
Proposal Network generates candidate region boxes; ROI 
Pooling resizes the feature matrix of candidate regions 
to a uniform size of 7 × 7, thus not limiting the size of 
the input image; Classification is used for object catego-
rization. During the feature extraction process, lower 
feature layers have a higher resolution and contain rich 
positional and detail information but limited seman-
tic information. Conversely, higher feature layers are 
rich in semantic information but may lose details, thus 
potentially missing small object detections. This research 
combines the feature pyramid network (FPN) [60] with 
ResNet50 [61], which is more effective for small objects, 
as the backbone of the model. The FPN enhances the 
model’s detection capabilities for small objects by upsam-
pling and integrating features, thereby transferring the 
semantic information from higher feature layers to lower 

Fig. 4  Image segmentation
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ones, thus improving the model’s ability to detect small 
objects.

We input the dataset into the Faster R-CNN ResNet50 
FPN model and trained the model using the stochas-
tic gradient descent (SGD) optimizer. The learning rate, 
momentum, weight decay, and batch size were set as 
0.005, 0.9, 0.0005, and 8, respectively, for a total of 20 
training epochs. The learning rate was decreased once 
every three epochs, with a decay rate (gamma) of 0.33. 
This learning rate decay mechanism helps enhance the 
stability of the training process, prevents the model from 
falling into local minima, and aids in optimizing the 
model more effectively. The training effectiveness of the 
model is assessed through the convergence of the loss 
value and learning rate, as well as the mean average pre-
cision (mAP) on the validation set.

Testing
After the model training, we use the test set to evalu-
ate the model’s generalization ability. The tile overlap-
ping method is employed for identifying the test set, and 
morphological filtering is used to remove impurities. 
Since mosquito eggs are generally similar in size [62], we 
filter the prediction boxes on the basis of the morphol-
ogy of the mosquito eggs, eliminating those with areas 
less than 200 pixels or greater than 900 pixels and those 
with aspect ratios greater than 4, to further improve the 
model’s detection accuracy. The detection performance 
of the model is evaluated via precision, recall, and F1 
score [63], with the values of these three indicators rang-
ing from 0 to 1. A value closer to 1 indicates better qual-
ity of the model. The F1 score, which combines precision 
and recall, is often used to assess model quality. In this 
study, we calculate the precision, recall, and F1 score at 
different prediction probabilities, selecting the prediction 
probability corresponding to the maximum F1 score as 
the threshold for the output results during detection. In 

addition to assessing the model’s identification ability, we 
also counted the actual number of eggs and the predicted 
number of eggs in each image of the test set, and used 
R-squared and root mean square error (RMSE) to evalu-
ate the model’s counting ability.

Operating environment
In this study, dataset partitioning, image segmentation, 
the tile overlapping method, and morphological filter-
ing were implemented via Python code. The hardware 
used for the experiments was an NVIDIA GeForce RTX 
3080, and the software environments included Python 
3.9.12, Torch 2.0.0, Torchvision 0.15.1, CUDA 11.7, and 
OpenCV 4.6.0.

Results
Model training
After 20 epochs of training, the model’s learning rate 
decreased from 0.005 to 0.000006 (Fig. 5A), with a decay 
every three training epochs. The loss value decreased 
from 0.1914 to 0.0839 (Fig. 5B), rapidly decreased in the 
first six epochs, and then gradually converged. The over-
all mAP increased with the number of training rounds, 
finally stabilizing at approximately 0.9881 (Fig. 5C). The 
gradual convergence and stabilization of the loss value 
and learning rate at lower levels indicate that the model’s 
predictions are increasingly consistent with the actual 
results, proving the reliability of the training outcomes. 
The mAP’s gradual stabilization at a high level demon-
strates the strong recognition capabilities of the model 
developed in this study.

Model testing
We segmented the images into 16 overlapping tiles, 
input them into the model for identification, and 
stitched the results after screening through mos-
quito egg morphology for the output. We calculated 

Fig. 5  Model training process. A mAP. B Loss. C Learning rate
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precision, recall, and F1 score, and plotted the preci-
sion–recall (P–R) curve for the evaluation of recogni-
tion ability (Fig. 6A). The model performed best when 
the prediction probability threshold was set as 0.9116, 
achieving precision of 0.977, recall of 0.978, and an 
F1 score of 0.977. In terms of counting ability, among 
the 334 images in the test set, the actual number of 
eggs was 15,952, while the model’s count was 15,974. 
Regression analysis on the actual versus predicted egg 
counts for each image yielded an R2 value of 0.997 
(Fig.  6B), Pearson correlation coefficient of 0.994, 
and RMSE of 1.742. Among the 344 testing images, 
140 had recognition results consistent with the actual 
counts, and 321 had errors within three eggs, resulting 
in an average counting error of 3.7%.

Discussion
Compared with similar studies [50, 52], our method 
shows significant improvement and demonstrates 
strong identification capabilities. During the identi-
fication process, the model can accurately recognize 
low- to medium-density Ae. albopictus mosquito eggs 
(Fig. 7A) and can even identify incomplete eggs (Fig. 7B). 
The model can also effectively eliminate large impuri-
ties (Fig.  7A). However, gravel that resembles the shape 
and color of mosquito eggs is difficult to remove and is 
likely to be misidentified as Ae. albopictus mosquito eggs 
(Fig.  7D), which negatively affects the precision of the 
model. Additionally, high-density egg clusters are prone 
to false negatives, leading to a decrease in the model’s 
recall (Fig. 7C). These two situations are the most chal-
lenging in both manual and machine-based identification 
and counting. Nevertheless, our method maintains high 
accuracy comparable to that of manual identification 

Fig. 6  Evaluation of model identification and counting capability. A Precision–recall curve. B Regression curve

Fig. 7  Egg identification cases. A Low- to medium-density Ae. albopictus mosquito eggs. B Incomplete mosquito eggs. C High-density Ae. 
albopictus mosquito eggs. D Impurities similar to eggs
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while significantly minimizing the processing time. Fur-
thermore, our method exhibits strong counting capabili-
ties, benefiting from its high precision and recall rates.

To thoroughly analyze the applicability of the model 
in different scenarios, we classified 344 test images into 
three categories based on their level of difficulty: easy 
(low to medium density of eggs with few impurities), 
medium (medium density of eggs with some impurities), 
and difficult (high density of eggs with a large number 
of impurities). Figure 8 shows the evaluation result. The 
images were divided based on the difficulty of manual 
labeling, with a total of 98 easy, 192 medium, and 54 diffi-
cult scenarios. In easy scenarios, the model demonstrated 
the best performance, which was close to that of the labo-
ratory strains. These findings indicate that although our 
model is trained on wild strains, it provides sufficient 
information on Ae. albopictus mosquito eggs, showing 
strong recognition capabilities for eggs, which can be 
transferred for use in laboratory strains. Medium scenar-
ios are the most common situation faced during practical 
applications. The model’s accuracy in medium scenarios 
is closest to that of the overall model without scenario 

differentiation. In difficult scenarios, precision, recall, 
F1 score, and detection thresholds all decrease. This is 
because, in such scenarios, a high density of eggs reduces 
the predictive probability of the eggs. Therefore, in prac-
tical applications, appropriately adjusting the thresholds 
according to specific scenarios can improve the model’s 
detection accuracy to a certain extent.

To verify the efficiency of the model in counting Ae. 
albopictus mosquito eggs, we compared its counting time 
using a magnifying glass with manual counting. We ran-
domly selected three easy-, five medium-, and two hard-
level images of Ae. albopictus mosquito eggs to closely 
match the dataset proportions. Table 1 presents the com-
parison results. The manual counting time is related not 
only to the number of mosquito eggs in the image but 
also to complex backgrounds and density levels, which 
can negatively affect the processing time of identifica-
tion. When the effects of background and density are dis-
regarded, the manual counting time is highly correlated 
with the number of eggs [29]. Complex background and 
denser eggs increase the counting time. However, the 
efficiency of counting is hardly affected when our method 

Fig. 8  Evaluation of the applicability of the model in different scenarios. Regression curve: A easy, B medium, C hard. Model evaluation values: D 
easy, E medium, F hard
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is applied, with an average detection time of 0.48  s per 
tile and 7.94 s for the entire image when the tile overlap-
ping method is used. The coefficient of variation is less 
than 1%, demonstrating the model’s stability and consist-
ency in performance. While ensuring high-quality count-
ing results, our method is at least 10 times faster than 
the human–computer interaction method. In instances 
where the image contains a large quantity of densely dis-
tributed eggs against a complex background, the model 
demonstrates an efficiency improvement exceeding 
50-fold.

We also designed experiments to verify the applica-
bility of our method for broader use in practical scenar-
ios. To explore the sensitivity of our method to camera 
specification, we examined the impact of lower specifi-
cations of image acquisition devices on the experimen-
tal results. We used OpenCV to downsample images, 
simulating images with different resolutions from vari-
ous devices. The threshold for morphological filtering 
was adjusted proportionally with the resolution. Table 2 
shows the results, which indicate that even when the 
image resolution is reduced to half of the original, the 
model’s F1 score remains stable. This indicates that our 
method is highly robust with low hardware require-
ments, making it suitable for most cameras, includ-
ing mobile devices. Even at a quarter of the original 

resolution, the model’s accuracy and recall exceed 
0.9. Moreover, when the image resolution is too low, 
transfer learning based on our model can significantly 
enhance identification accuracy. These experiments 
confirm the applicability of our method, demonstrating 
its potential for wide-ranging applications.

Despite the great contribution made by Arista-Jalife 
et al. [64], who increased the number of training sam-
ples from 916 to 18,320 by randomly rotating and mov-
ing images horizontally and vertically, the diversity of 
their training samples may remain insufficient, lead-
ing to a relatively weak generalization capability of 
the model. To address this problem, we collected 1729 
images of wild-strain Ae. albopictus mosquito eggs in 
various complex scenarios to increase the diversity 
of the samples. However, the environment where Ae. 
albopictus mosquitoes live is complex; in further work, 
the training dataset can be further expanded to incor-
porate more scenarios. The recognition performance of 
the proposed model decreases in scenarios with high 
egg density and numerous similar impurities, which 
are also the most challenging situations for manual 
methods. To enhance the model’s performance in these 
scenarios, further work can be dedicated to increasing 
the number of image samples containing high-density 
mosquito eggs in various complex scenarios and nega-
tive sample labels of similar impurities to enhance the 
model’s recognition capability.

Garcia et  al. [52] removed the black areas which 
had originated during the image acquisition with the 
magnification lens before training the model, which 
provides valuable insight for the image preprocess-
ing workflow. We improved this operation by utilizing 
SAM, which concentrates on the region of interest, 
significantly reducing interference from complex back-
grounds. However, a limitation of this method is that 
the prompts required by SAM need to be provided 
manually. To address this, we designed a point prompt 
generator, allowing for batch processing with a single 
manual parameter adjustment. Future research efforts 
can be dedicated to the automated point prompt 
parameter selection for different batches of images.

Table 1  Temporal comparison of different methods

Class Number of eggs (n) Time (s)

Manual Model Manual Model

Easy 69 69 102 8.09

– 83 83 138 7.88

– 42 42 83 7.89

Medium 22 22 84 7.98

– 79 77 156 7.94

– 182 177 388 7.92

– 39 40 124 7.97

– 17 17 79 7.82

Hard 132 125 453 8.03

– 56 57 183 7.88

Table 2  Comparison of model performance at different image resolutions

Image resolution (pixels) Downsampling ratio Tile size Overlapping size Morphological filtering size (min, 
max, and ratio)

F1 score

4160 × 4160 1 1040 30 (200, 900, 4) 0.977

3120 × 3120 3/4 780 16 (112, 506, 4) 0.976

2080 × 2080 1/2 520 8 (50, 225, 4) 0.976

1040 × 1040 1/4 260 4 (12, 56, 4) 0.929
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Conclusions
To overcome the challenge of precise and efficient identi-
fication of mosquito eggs when monitoring the density of 
Ae. albopictus using ovitraps in wild environments, this 
study constructed an image dataset of Ae. albopictus mos-
quito eggs from wild strains and optimized the image pre-
processing process using SAM. We trained a Faster R-CNN 
ResNet50 FPN model specifically for small target detection 
based on image segmentation, employed a tile overlap-
ping method to identify Ae. albopictus mosquito eggs, and 
removed impurities through morphological filtering. The 
final model demonstrated strong performance in the iden-
tification and counting of Ae. albopictus mosquito eggs. 
The efficiency of this method is at least 10 times that of the 
human–computer interaction method, and even more than 
50 times greater in complex situations, making it highly 
effective for identifying and counting eggs in wild strains 
with complex backgrounds.
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