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Abstract 

Rapid urbanization and migration in Latin America have intensified exposure to insect‑borne diseases. Malaria, Chagas 
disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika 
have been described and expanded more recently. The increased presence of synanthropic vector species and spread 
into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission 
risks. This review examines recent outbreaks and reemergence of insect‑borne diseases through five case studies: (i) 
malaria transmission linked to political instability and large‑scale migration through the Amazon jungle; (ii) the expan‑
sion of triatomine bug habitats into overcrowded, substandard urban settlements, increasing Chagas disease inci‑
dence; (iii) the influence of movement and ecotourism in the Amazonia on yellow fever transmission in peri‑urban 
areas; (iv) the spread of visceral leishmaniasis driven by deforestation and human–canine movement; and (v) dengue 
outbreaks in rural Amazon regions, spurred by urbanization and rural development. The findings underscore the com‑
plex interactions among vectors, pathogens, and shifting environmental and social conditions, complicating predict‑
ability and control. Addressing the social, economic, and political determinants of health is crucial to reducing disease 
transmission. Key measures include scaling vaccine coverage, especially for dengue and yellow fever; developing 
vaccines and treatments for neglected diseases; improving housing and sanitation; strengthening vector surveillance 
and control; fostering community engagement; enhancing data‑driven interventions.
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Insect‑borne diseases and anthropogenic changes: 
what is going on today?
Human migrations and anthropogenic changes in the 
environment are major drivers for the community com-
position, abundance, and richness of mosquito species 
[1]. Deforestation, agricultural development, land-use, 
and urbanization processes generally result in a decrease 
in insect diversity, followed by a surge in the abundance 
of those species that are better suited to urban life [2]. For 
instance, this is the case of the mosquitoes Aedes albop-
ictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) 
and some phlebotomine sand flies (Diptera: Psychodidae: 
Phlebotominae) [3–5].
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Insect-borne disease transmission is a complex eco-
logical phenomenon where multiple species (i.e., vec-
tors, hosts, reservoir species, dead-end hosts, and others) 
are involved in the transmission cycle. For instance, 
the higher abundance of mosquitoes and the elevated 
human population density increase the exposure level 
to these vectors and the risk of mosquito-borne patho-
gen transmission in urban as compared to rural areas 
[6]. In urban settlements, diseases such as dengue are 
linked to insufficient water supplies for personal and 
domestic hygiene and appropriate solid waste disposal 
measures [7]. Furthermore, given that urbanization is on 
the rise in Latin America, it is crucial to understand the 
impact of biodiversity loss and the increasing presence 
of synanthropic insects on the incidence of insect-borne 
diseases [8]. Since the 1950s, Latin America has experi-
enced a significant boom in terms of urbanization, with 
an increased flow of people migrating from rural areas 
to cities in search of employment and improved socio-
economic opportunities. Such complex migration pro-
cesses are dynamic and can be influenced by numerous 
economic, political, social, and environmental factors 
[9]. Rural development and deforestation policies have 
historically had an impact on migration waves in Latin 
America [9]. For example, environmental crimes in Bra-
zil have recently caused widespread destruction of natu-
ral areas [10], resulting in a significant ecological change 
[11]. At the same time, the presence of forest and road 
workers and new properties in the deforested areas trig-
gers a surge in disease transmission, including malaria 
and arboviruses [11, 12].

In the present review, we analyze current knowledge 
about outbreaks and reemergence of  insect-borne dis-
eases in relation to human migrations and anthropogenic 
changes in Latin America. We discuss several case studies 
of interest for public health, including malaria and Cha-
gas disease transmission connected to political crises and 
migrations, the effects of deforestation, urbanization, and 
ecotourism on yellow fever and leishmaniasis, and den-
gue outbreaks in rural areas of the Amazon rainforest.

Concise history of insect‑borne diseases in Latin 
America
Latin America has been the origin, transit, and destina-
tion of millions of international migrants. Besides the 
historical European migrations since the conquistadores, 
many people have moved to and within Latin America in 
search of work and education opportunities, as well as 
refugees fleeing war and persecution [9, 13]. At the same 
time, Latin America always has been, and still is, afflicted 
by numerous insect-borne diseases connected to human 
activities and movements.

Malaria has been present for centuries, with the first 
reports dating from the 1500s, when Plasmodium falci-
parum was introduced by the African transatlantic slave 
trade [14]. The introduction of Plasmodium vivax into 
the Latin American region, where it is now the predomi-
nant species, happened more than 10,000 years ago [15]. 
Over the centuries, even with low and unstable transmis-
sion rates, malaria has imposed a considerable burden on 
local populations in the Amazon region [16]. Despite the 
many efforts made by public health authorities in vector 
control, medications, and antimalarial drugs, resulting in 
a substantial decrease in incidence [16], malaria is still 
endemic in 18 Latin American countries [17] and a reaf-
firmed risk particularly in Venezuela [18].

American trypanosomiasis (i.e., Chagas disease) was 
first described in Latin America in the 1900s [19]; how-
ever, it was already endemic in the area when the first 
humans arrived [20]. Chagas disease is caused by Tryp-
anosoma cruzi, a protozoan parasite  transmitted to 
humans and animals by the ~154 extant species of tri-
atomine bugs (Hemiptera: Reduviidae), predominantly 
belonging to the genera Panstrongylus, Psammolestes, 
Rhodnius, and  Triatoma [21–23]. Even though the inci-
dence of Chagas disease has decreased over the years in 
some countries (e.g., Argentina –54.68%, Chile –50.95%, 
Uruguay –49.95%) thanks to tremendous efforts to eradi-
cate the vectors through home restorations and the use 
of synthetic insecticides [24], it is still considered a major 
threat to public health.

Yellow fever arrived in Latin America from Africa with 
the slave trade during the 1600s [25]. Since then, many 
outbreaks have occurred, especially in Brazil, with more 
than 4000 deaths in Rio de Janeiro in the 1850s and the 
massive 1928–1929 urban epidemic in the same city [26]. 
Fortunately, the availability of a well-known and afford-
able vaccine coupled with intense vector control mostly 
reduced yellow fever to a disease of exclusive sylvatic 
transmission.

Leishmaniasis, caused by flagellated protozoa of the 
genus Leishmania spp., is transmitted by over 90 phle-
botomine sand fly species. The disease manifests in three 
clinical forms: visceral, the most fatal and occurring espe-
cially in Brazil; cutaneous, the most common worldwide; 
mucocutaneous, having higher incidence among Latin 
American countries (e.g., Bolivia, Brazil, Peru) [27]. In 
Latin America, the first autochthonous skin and mucosal 
manifestations were described in 1909, whereas visceral 
leishmaniasis has been established since 1934 [28]. While 
species causing cutaneous leishmaniasis are native to the 
Neotropical region, genetic data indicate that Leishmania 
infantum, the agent of the visceral form, was introduced 
to South America by European conquistadors through 
their dogs [29].
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Sporadic cases consistent with the then unknown 
dengue fever have been reported in Latin America 
since the 1700s. In the 1800s, a lingering dengue-like 
outbreak (historical records suggest that it may have 
been caused by the chikungunya virus brought to 
America by the African slave trade [30]) affected sev-
eral countries in Latin America. By 1943–1944, when 
the dengue virus was first isolated, it had already spread 
throughout and was endemic in large portions of Latin 
America [31]. Currently, all Latin American countries 
are experiencing the highest recorded dengue cases in 
their history [32, 33].

Chikungunya virus was first isolated in 1953 in Tan-
zania, but it had probably been circulating in Africa 
and Asia for hundreds of years. In 2005, it spread into 
the Indian subcontinent and, afterward, the Western 
Hemisphere. Chikungunya reached Brazil in 2014, 
making the state the epicenter of American epidemics, 
with 1,659,167 cases in just two years [34]. Chikungu-
nya is characterized by acute infection (Fig. 1) followed 
by chronic manifestations such as debilitating mus-
culoskeletal stiffness, joint pain, chronic fatigue, and 
depression [35, 36]. Asymptomatic cases, which repre-
sent 15%, are mainly responsible for the virus spreading 
among the continents [37]. In November 2023, the first 
vaccine was approved by the US Food and Drug Admin-
istration for adults   18 years of age and older [38], and 
several other candidates are under development.

More recently, the Zika virus has also been reported 
in Brazil [39]. The most accepted theory is that the 
virus circulating in French Polynesia was introduced in 
Rio de Janeiro during a sports event in 2015 [40]. Then, 
it rapidly spread through neighboring countries, reach-
ing North America in 2016 [41]. More than 700,000 
cases were reported in Latin America from 2015 to 

2017, but the incidence has been projected to decrease 
due to high levels of herd immunity in the population 
[42].

Political crisis and malaria transmission 
in Venezuela
A political, economic, and humanitarian crisis in Vene-
zuela in the early 2010s has resulted in large-scale migra-
tion. The decline in oil prices, economic mismanagement, 
political instability, and international sanctions, often due 
to human rights violations and the destruction of demo-
cratic institutions, led to widespread poverty, food inse-
curity, hyperinflation, and the collapse of the country’s 
infrastructure [43]. Therefore, millions of people have 
fled Venezuela in search of better socioeconomic and liv-
ing conditions, with many seeking refuge in neighboring 
Latin American countries [13].

The mass migration out of Venezuela had major public 
health implications. Millions of people marched through 
the Amazon jungle to reach the Colombian and Brazilian 
borders, where they were exposed to highly anthropo-
philic mosquito vectors of malaria, such as Anopheles 
darlingi Root (Diptera: Culicidae). Furthermore, sub-
standard and overcrowded settlements in border areas 
facilitated the contact between migrant populations and 
other Anopheles spp. vectors. Then, inadequate mosquito 
control and deficient health systems (eg.., antimalarial 
drugs and diagnostic supplies were not sold under medi-
cal prescription nor provided by the Venezuelan Gov-
ernment, shortages of indoor and outdoor insecticides 
for control campaigns) made the migrants particularly 
vulnerable to malaria [44]. As a result, there was a 1200% 
increase in cases of malaria in Venezuela compared to the 
mean number in the early 2000s [18].

The Venezuelan migration crisis has also resulted in a 
major increase in malaria [45, 46] and other arboviral dis-
ease [45] in neighboring countries. Only the Venezuelan 
government failed to control malaria to such an extent, 
whereas in Brazil and Colombia, the morbidity, mortal-
ity, and economic burden associated with this endemic 
disease was reduced by more than 50% [44]. This relapse 
might hinder the global strategy for malaria elimination 
from the region by at least 90% before 2030 [47] and is 
a downgrade toward the progress made between 2000 
and 2015 [48]. A contribution may come from vaccina-
tion. The vaccine RTS,S/AS01, approved by the World 
Health Organization (WHO) in 2021 after 60  years of 
development [49], and the more recent R21/Matrix-M, 
first administered in 2024 in Côte d’Ivoire [50], are rec-
ommended for children (from 5 months of age) living in 
moderate-to-highly affected countries of Africa. Actually, 
both vaccines protect against malaria caused by P. falci-
parum [51], though P. vivax is the predominant species 

Fig. 1 Skin cutaneous rash on the hand (A) and forearm (B) 
of a patient from Brazil with acute chikungunya fever. The patient 
also presented with fever, fatigue, and polyarthritis (photo credit: 
Filipe Dantas‑Torres)
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in Latin America, accounting for 72% of cases in 2022 
[52]. Therefore, the need for more investment in an effec-
tive and safe P. vivax vaccine to control the disease is still 
urgent.

Migration, inequities, and Chagas disease
Over 150 species of triatomine bugs [23] may transmit T. 
cruzi under experimental conditions, and more than 100 
species of mammals are susceptible hosts and reservoirs 
for its   infection in nature [53]. Vectors and mammal 
hosts are widespread in Latin America, where Chagas 
disease occurs endemically in 22 countries. Chagas dis-
ease has always been associated with poor living condi-
tions of underserved populations in rural areas in Latin 
America [54]. However, due to ongoing urbanization 
processes and mass migration from rural areas to cities, 
some triatomine bugs have adapted and expanded their 
distribution range to urban environments by exploit-
ing inequitable conditions in the form of overcrowded 
and substandard housing conditions [55]. Urban infesta-
tions, which have been increasing from the 1990s up to 
now, and especially in the last three decades, are linked 
to at least 18 species of triatomine bugs having different 
degrees of adaptation to the urban environment [56].

In addition, human migration from endemic to non-
endemic regions in search of improved living standards 
has altered the global distribution of Chagas disease [57]. 
Current estimates point to more than 300,000 imported 
cases in the USA, 80,000 in Europe, 5000 in Canada, 
3000 in Japan, and 1500 in Australia [58]. Latin Ameri-
can countries have been introducing screening on blood 
units for transfusions searching for microorganisms with 
proven blood transmission, including T. cruzi, since the 
1990s [59]. Conversely, most developed countries were 
not prepared to identify and respond to the challenges 
posed by Chagas disease. For example, blood banks in 
Europe and North America have only recently included 
T. cruzi in the list of pathogens routinely tested to screen 
the millions of blood and organ donors [60, 61].

Another layer of complexity to the already multifac-
eted epidemiology of Chagas disease transmission is 
added by acute outbreaks through oral transmission 
[62]. For example, triatomine bugs are naturally found 
on açaí palm trees [Euterpe oleracea Mart. (Arecales: 
Arecaceae)], and their crushed berries and juices are tra-
ditionally consumed in the Amazon region. Oral trans-
mission occurs when T. cruzi-infected triatomine bugs 
or their feces are unintentionally collected and processed 
alongside the açaí berries or other contaminated food 
(e.g., sugarcane,  guava juices) [63–65]. Upon ingestion, 
hosts develop highly symptomatic Chagas disease with 
an increased mortality rate when compared to infections 
transmitted by vector bite  and defecation [66]. From 

2011 to 2020, 2668 cases of acute Chagas disease were 
reported by health authorities in Brazil alone [67]. Never-
theless, the burden of the disease in other Latin American 
countries may be underestimated due to underdiagnos-
ing and underreporting [68].

Chagas disease is still a significant public health chal-
lenge, which requires the development and implementa-
tion of preventative and curative strategies in endemic 
and nonendemic regions [55, 69]. In this framework, the 
combined deployment of chemical and non-chemical 
vector control strategies and the improvement of hous-
ing conditions may help reduce insect vector populations 
in the (peri)domestic environment [70]. The manage-
ment of domestic populations of triatomines that are also 
found in sylvatic environments is challenging, as the pos-
sibilities of re-infestation after the treatments are, unfor-
tunately, higher [71]. To limit the insurgence of orally 
transmitted Chagas disease in areas at risk, it is crucial 
to inform fruit producers and sellers about basic precau-
tionary  procedures to prevent T. cruzi contamination 
during storage and processing, as well as develop educa-
tion campaigns to inform locals and tourists about the 
hazard posed by food consumption in certain zones [65].

Yellow fever and travelers
Yellow fever is considered endemic in the Amazon rain-
forest and parts of some countries (e.g., Peru, Colom-
bia, Venezuela, Brazil), and its jungle transmission is 
mainly maintained by Haemagogus spp. and Sabethes 
spp. mosquitoes (Diptera: Culicidae) [72]. Yellow fever 
transmission in sylvatic cycles occurs when such mos-
quitoes blood feed on non-human primates [73]. How-
ever, humans living or traveling through the Amazonia 
or along the border between forested and peri-urban 
or rural areas are at increased risk of being bitten by 
infected mosquitoes, especially during the warmer 
months of the year when they are more abundant and 
travelers are engaging in outdoor daylight activities in the 
region [74, 75].

The implementation of mosquito control strategies in 
the forest is unrealistic due to its inherent characteristics 
(e.g., dense vegetation, high humidity, abundant back-
water, vast land area). Therefore, the response from the 
public health authorities to deal with the threat of yel-
low fever transmission in the region has been primar-
ily focused on vaccination as a preventive measure [76]. 
A cost-effective vaccine, named 17D, has been avail-
able since 1937 [77]. According to the WHO, a single 
dose provides lifelong lasting immunity for most peo-
ple [78]. The WHO also provides a listing of countries 
at risk of yellow fever transmission and those requiring 
proof of vaccination (Fig.  2) against it [79]. In addition, 
it offers an interactive map with information on yellow 
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fever transmission and vaccination requirements for the 
Americas [80].

Occasionally, Ae. aegypti and Ae. albopictus are 
responsible for the transmission in urban and peri-urban 
environments [81], as in the cases of urban epidemics in 
Brazil back in 1935–1940 [25]. More recently, an urban 
outbreak of yellow fever took place in Asunción, the capi-
tal city of Paraguay, but Ae. aegypti control and a massive 
vaccination effort contained the damage [82]. The yel-
low fever virus also reemerged in central-western Brazil 
in 2014, and then spread to eastern and southern regions 
of the country [73, 83, 84]. From 1994 to 2023 (Fig.  3), 
2768 reported cases and 1010 deaths were recorded [85], 
with most of the infected individuals being unvaccinated 
people.

The recent yellow fever outbreak in Brazil exemplifies 
the need to improve preparedness and response. The 
detection of Ae. albopictus specimens infected with yel-
low fever in a transmission hotspot area in Minas Gerais, 
Brazil (part of the Atlantic Forest biome) [86] elevated 
their status as a potential bridge species from a sylvatic 
to an urban transmission cycle [87, 88]. Due to increasing 
deforestation and urbanization of natural areas, the risk 
of urban transmission of yellow fever mediated by Ae. 
aegypti poses a substantial threat to public health.

Deforestation, urbanization, ecotourism, 
and leishmaniasis
Leishmaniasis is a growing global public health threat 
caused by Leishmania spp. protozoa, which are transmit-
ted by several species of phlebotomine sand flies [89]. In 
Latin America, leishmaniasis has been historically asso-
ciated with natural areas, and cases were rarely reported 
in urban contexts [90]. However, during the past decades, 
the disease has also been spreading to urban areas [91]. 
Factors influencing this urbanization process of leishma-
niasis (especially the visceral form of the disease) include 
the capacity of vector sand flies to thrive in urban set-
tings [92], deforestation [93], use of former forest areas 
for infrastructure development (e.g., road construction) 
[94], and movement of human and canine populations 
from rural and urban areas [95]. Still, the burden of leish-
maniasis remains heavier in underserved rural environ-
ments in Latin America, being strongly linked to poor 
housing conditions (Fig. 4) and high levels of exposure to 
sand flies.

A minor trend in leishmaniasis transmission has been 
reported by many studies in relation to travelers (e.g., 
adventure travelers, military personnel, researchers) [89, 
96, 97]. The interest in ecotourism and business trips has 
exposed visitors from many regions of the world to infec-
tious sand fly bites. For this reason, Latin America is now 
considered a critical transmission zone of leishmaniasis 

Fig. 2 International certificate of yellow fever vaccination. The 
certificate validity used to be 10 years, but now it is lifelong (photo 
credit: Filipe Dantas‑Torres)

Fig. 3 Reported human cases of yellow fever in Brazil from 1994 
to 2023. The southeast region reported the highest number of cases, 
likely due to tourists encountering vector mosquitoes that are 
endemic to the Atlantic Forest. The figure was produced using ArcGIS 
10.2 (Esri, Redlands, CA)
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among tourists who visit natural areas (e.g., rivers, water-
falls, caves) bearing high risk of infection [98–100], espe-
cially of the cutaneous form [101].

Currently, there are no licensed vaccines for the pre-
vention of human leishmaniasis, and since this neglected 
tropical disease primarily concerns low- and middle-
income countries, commercial developers are less inter-
ested in them [102]. One viable solution is transmission 
prevention, relying on sand fly bite avoidance through 
personal care measures (e.g., repellents on clothes and 
exposed skin) and the use of insecticide-treated nets.

Dengue in the Amazon
Aedes albopictus and Ae. aegypti are commonly iden-
tified as the primary vectors of arboviruses of public 
health importance [103, 104]. Aedes aegypti is a highly 
competent vector of chikungunya,  dengue, yellow fever, 
and  Zika, causing single and multiple infections, with 
Brazilian mosquito populations being particularly sus-
ceptible to dengue infections [105, 106]. In Brazil, Ae. 
albopictus is commonly considered a vector of rela-
tively minor significance [107], although it has been pre-
sent since 1986 [108] and is currently spread in 24 out of 
27 states [109]. Those Aedes species greatly benefit from 

urbanization due to abundant blood sources, especially 
in densely populated areas, fewer natural predators, and 
widely available human-made aquatic habitats [6].

Over the last 30  years, the dengue burden has pro-
gressed worldwide at the same pace as socioeconomic 
development, climate warming, and human population 
movements [110]. In remote and agricultural areas of 
Brazil, the deforestation of natural areas for the creation 
of rural developments has led to a major increase in the 
incidence of dengue [111, 112]. Because of the creation 
of rural developments, not only did the human popula-
tion density increase due to the migration of workers 
(both to work on the rural developments and provide 
infrastructure and leisure), but new dengue serotypes 
were introduced into naïve human populations, includ-
ing local indigenous natives [113]. Furthermore, migrants 
working in mining and rural developments were more 
severely affected due to overcrowded and substandard 
living conditions, increased exposure to mosquito vec-
tors, and limited access to health care [114]. These fac-
tors are major drivers for the increased risk of dengue 
transmission and spread [110, 115, 116]. As a result, the 
highest dengue incidence in Brazil was reported in rural 
areas. For instance, in 2022, the state of Acre experienced 

Fig. 4 Poor housing and environmental conditions (A) in an area where cutaneous leishmaniasis by Leishmania braziliensis is endemic. A precarious 
oven (B), a chicken pen (C), and a dog with an ulcer on the ear (D). Dogs in this area are also frequently infected by L. braziliensis (photo credit: Filipe 
Dantas‑Torres)
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1594 cases of dengue per 100,000 people, followed by 770 
dengue cases in Goiás, 592 in Mato Grosso, and 534 in 
Tocantins [117].

In the first weeks of 2020, despite the ongoing COVID-
19 pandemic and limited human population move-
ments, Brazil reported an increased number of dengue 
cases [118], whereas a few months later, the country 
noted an abrupt decrease in dengue notifications, prob-
ably because of social isolation or underreporting [119]. 
Therefore, the above-listed numbers might even be 
underestimated.

Data obtained from the passive surveillance system 
in Neiva,  Colombia showed a significant occurrence 
of arboviral diseases (i.e., more than 6% of the popula-
tion), mainly dengue (followed by Zika and chikungu-
nya), among populations internally displaced by armed 
conflicts or persecution [120]. In these situations, politi-
cal commitment is fundamental to decreasing the num-
ber of populations considered internally displaced in the 
country and including them in an equitable health system 
with appropriate health coverage [120].

Currently, two dengue vaccines against the four virus 
serotypes are commercially available: one (CYD-TDV) 
is only recommended for already infected children and 
adults (ages 9–45  years) living in endemic areas, and 
the other (TAK-003) as a form of prevention, suitable 
for children and adults (ages 4–60  years), with or with-
out previous dengue infections. CYD-TDV, approved in 
Brazil, Mexico, El Salvador, Costa Rica, Paraguay, Peru, 
Guatemala, and other countries outside Latin America, 
appears to increase the risk of more severe symptoms 
if injected in naïve patients [45]. This adverse outcome 
reduces the total number of individuals who can be vac-
cinated in endemic countries, thus negatively impacting 
the implementation of solid preventive measures [121]. 
Since September 2023, TAK-003 has been officially rec-
ommended by the WHO for the routine immunization 
programs of children (ages 6–16  years) in settings with 
high dengue transmission intensity [122]. Despite the 
WHO prequalification, the vaccine is currently only 
available in Brazil, which is the first country in the world 
to implement dengue vaccination at the national level 
[123, 124].

Future challenges
Insect-borne diseases continue to significantly threaten 
public health in Latin America. The complex interaction 
among vector ecology, human behavior, and environmen-
tal and socioeconomic conditions are relevant drivers for 
the risk of pathogen transmission in the region. In this 
framework, human migration historically played a crucial 
role in the spread of insect-borne diseases in Latin Amer-
ica. Both domestic and international migrations can 

bring susceptible human populations into areas of active 
transmission, as well as introduce vectors and pathogens 
into previously free regions. Migrants, refugees, and dis-
placed populations are particularly vulnerable to insect-
borne diseases due to their often-limited access to health 
care and inadequate living conditions.

For diseases with already available and recommended 
vaccines, such as dengue, chikungunya, and yellow fever, 
the implementation of proper vaccination campaigns still 
needs to be improved in some Latin American countries. 
For instance, despite the declared efficacy of the yellow 
fever vaccine under laboratory conditions, its applica-
tion has been sometimes  hindered by logistical chal-
lenges in production and distribution, along with issues 
concerning public adherence to the initiative [125–127]. 
Importantly, the development of vaccines and drugs for 
insect-borne neglected diseases, such as  human leishma-
niasis and Zika, should be treated as a priority by govern-
mental and nongovernmental organizations, as well as by 
the pharmaceutical industry.

Particularly in resource-limited regions, traditional 
surveillance and control methods remain essential for 
informing public health authorities on hot spot areas 
for insect-borne disease transmission and subsequent 
response through control interventions. In most situa-
tions, vector control remains a cardinal component of 
outbreak response, but the increasing levels of insecti-
cide resistance in mosquitoes [128] and triatomine bugs 
[129] pose a significant challenge to the implementation 
of effective, environmentally friendly, and long-term sus-
tainable control strategies. Regrettably, vector control is 
not applicable to fully avoid oral transmission of Chagas 
disease and is unfeasible in the case of outbreaks in chal-
lenging environments such as forests.

In the current scenario of intense migrations coupled 
with severe anthropogenic changes, successful control 
strategies should follow the integrated vector manage-
ment (IVM) framework by combining all  the available 
resources and tools to develop effective  and sustainable 
control interventions. Technology can also be a power-
ful tool if implemented under the IVM framework [130]. 
Geographic Information Systems (GIS) and statistical 
and simulation models (including the forecast of dis-
ease transmission and projection of the effectiveness of 
control interventions) provide good opportunities for 
enhancing disease and vector surveillance and the evalu-
ation of the effectiveness of control strategies [131, 132]. 
The development and implementation of sustainable 
control strategies remains a major challenge in resource-
limited countries. For instance, a single injectable dose of 
fluralaner (isoxazoline) in dogs has been proven effica-
cious in managing tick and flea infestations for one year 
[133, 134]. This strategy could be further explored to 
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control diseases such as leishmaniasis by L. infantum, 
considering the role of dogs as reservoirs of this parasite.

At the same time, the lack of robust and reliable sur-
veillance systems, as well as their integration with data 
analysis capabilities to allow the development of scien-
tific-driven interventions and the implementation of 
early warning systems, are major obstacles for public 
health authorities to adequately respond to outbreaks 
and track disease transmission. Interdisciplinary col-
laboration and data sharing across different sectors and 
stakeholders involved in research and control, including 
public health authorities, scientists, and local communi-
ties, should also be one of the main goals.

Surveillance systems are especially important to 
respond to insect-borne disease transmission in urban 
areas. Urbanization creates a wide range of habitats for 
the proliferation of vector species, while also increasing 
human population density and, therefore, making the 
contact between insect vectors and human hosts more 
frequent. The situation is even worse for vulnerable 
populations such as migrants, refugees, and underserved 
communities who often must endure substandard living 
conditions and limited access to health care, thus being 
more exposed to insect vectors and having poorer health 
outcomes when infected with pathogens. Promoting the 
engagement of communities, public health authorities, 
and stakeholders in addressing the social and economic 
determinants of health that contribute to insect-borne 
diseases is crucial to face the future challenges of reduc-
ing this burden in Latin America.

Conclusions
The outbreaks or reemergence of insect-borne diseases 
that have been historically afflicting Latin America or 
were more recently described and have lately expanded 
are often related to human migrations and anthropo-
genic changes such as urbanization, deforestation, and 
ecotourism. Even the Oropouche fever, an alarming arbo-
viral disease historically maintained in sylvatic cycles in 
the Amazon basin only and now threatening Brazil, Peru, 
Bolivia, and Colombia [135], may be linked to human 
mobility and the consequent population density increase 
[136]. The complex interactions among vectors, patho-
gens, humans, and environmental and climate changes 
are not fully understandable or predictable. Addressing 
the social, economic, and political determinants of health 
that impact the burden of insect-borne diseases in Latin 
America is essential for reducing their transmission, 
particularly for the most vulnerable populations. The 
key strategies to lower their incidence in Latin Amer-
ica include a higher vaccination coverage for diseases 
with already available and recommended formulations 
(e.g., dengue, chikungunya, yellow fever), as well as the 

implementation of refined vector surveillance systems 
and control programs. Improving the basic sanitation, 
potable water supply, and housing conditions in the most 
affected areas is just as important. Finally, social media 
(e.g., X, previously Twitter [137]) and social messaging 
apps (e.g., WhatsApp [138]) may also play a key role in 
increasing community engagement and outreach of con-
trol activities to mitigate insect-borne diseases in Latin 
America.
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