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Abstract 

Background‑Objective  Trichinella spiralis drug development and control need an objective high throughput 
system to assess first stage larvae (L1) viability. YOLOv5 is an image recognition tool easily trained to count muscular 
first stage larvae (L1) and recognize morphological differences. Here we developed a semi-automated system based 
on YOLOv5 to capture photographs of 96 well microplates and use them for L1 count and morphological damage 
evaluation after experimental drug treatments.

Material and methods  Morphological properties were used to distinguish L1 from debris after pepsin muscle diges‑
tion and distinguish healthy (serpentine) or damaged (coiled) L1s after 72 h untreated or treated with albendazole 
or mebendazole cultures. An AxiDraw robotic arm with a smartphone was used to scan 96 well microplates and store 
photographs. Images of L1 were manually annotated, and augmented based on exposure, bounding, blur, noise, 
and mosaicism.

Results  A total of 1309 photographs were obtained that after L1 labeling and data augmentation gave 27478 
images. The final dataset of 12571 healthy and 14907 affected L1s was used for training, testing, and validating 
in a ratio of 70/20/10 respectively. A correlation of 92% was found in a blinded comparison with bare-eye assessment 
by experienced technicians.

Conclusion  YOLOv5 is capable of accurately counting and distinguishing between healthy and affected L1s, thus 
improving the performance of the assessment of meat inspection and potential new drugs.
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Background
Trichinella spiralis is a globally distributed parasitic 
nematode causing trichinellosis, a zoonotic foodborne 
disease affecting both humans and animals [1]. Domestic 
and wild animals, particularly carnivores, serve as reser-
voirs, facilitating the persistence of the parasite and con-
sequently threatening both livestock and human health 
[2]. This is especially significant given the ongoing public 
health concern surrounding T. spiralis infections, notably 
in regions where the consumption of undercooked pork 
or game meat of wild boar, bear, deer, moose, or walrus 
is prevalent [3–6]. Approximately 10,000 cases of trich-
inellosis are reported annually worldwide, with signifi-
cant morbidity and mortality [7]. Clinical manifestations 
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such as nausea, vomiting, abdominal pain, and diarrhea 
start within 12–48  h after eating contaminated meat 
when first-stage larvae (L1) develop into adults. Later, 
L1 migration results in fever, malaise, chest pain, mus-
cle pain, and skin rashes within 5 to 7 days. Muscle pain 
and fever may persist for 1 to 6  weeks. Encysted larvae 
may lead to injuries ranging from slight muscle damage 
to severe complications such as sepsis [1, 5]. In animals, 
T. spiralis infections reduce productivity and increase 
susceptibility to other diseases, particularly in swine [8, 
9]. The economic impact of T. spiralis infections encom-
passes direct costs associated with control measures, 
slaughterhouse seizures, and trade restrictions [10, 11].

Current treatment options for T. spiralis infections 
primarily involve using benzimidazoles such as alben-
dazole or oxfendazole. These drugs have limited efficacy 
against encysted larvae, and therefore new alternatives 
are needed [12, 13]. L1 cultures are used in in vitro drug 
screening, where L1 viability is associated with mobility, 
morphological shapes, and integrity of larvae. Promising 
candidates could be used against experimental infections 
in a trichinellosis mouse model. In both cases, a trained 
observer must conduct extensive optical microscope ses-
sions to count healthy and damaged larvae or determine 
the number of larvae per gram of muscle [14, 15]. In 
the development pipeline of new drugs, objective high-
throughput techniques are needed to screen large num-
bers of candidates. A computer vision model for larval 
categorization and count estimation systems could be 
useful to avoid limitations such as subjectivity and inte-
rassay variability and to improve repeatability, accuracy, 
and time consumption of the analysis. These tasks could 
be performed by AI (Artificial Intelligence) applications 
based on deep-learning-based image recognition pow-
ered by convolutional neural networks (CNNs) [16]. A 
wide range of domains has been revolutionized by object 
recognition: autonomous vehicles, robotics, security sur-
veillance, or medical imaging [17]. In parasitology, it has 
been used for helminth detection, facilitating automated 
egg scanning from soil-transmitted species like Ascaris 
lumbricoides, Trichuris trichiura [18], or hookworms 
based on their sizes, shapes, and texture features. Fur-
thermore, it can assess viability based on morphology 
and motility, extending to nematodes like Brugia malayi 
and Dirofilaria immitis [19]. Simpler architectures 
like YOLO (You Only Look Once) have demonstrated 
remarkable performance in detecting general objects 
[20]. These models operate efficiently without requiring 
extensive knowledge or computational power. YOLOv5-
based automatic recognition algorithms have already 
been employed in detecting parasitic eggs in human 
feces [21] and Onchomelania snails, an intermediate host 
of Schistosoma japonicum [22]. These studies could be 

further improved by adding an automated image acqui-
sition system like the one proposed in this study, which 
reduces the time the plates stay out of the incubators and 
therefore the biological variation due to culture handling.

We describe the development of a semi-automatic 
image analysis based in YOLOv5 system linked to a Do-
It-Yourself image acquisition apparatus (AxiWorm) for 
the assessment of first-stage larvae (L1) of Trichinella 
spiralis. This will be used to evaluate the antiparasitic 
activity of putative drugs in in vitro cultures and to count 
L1 larvae per gram of skeletal muscle after experimen-
tal treatment. YOLOv5 is an image recognition model 
requiring a middle level of programming skill and with 
limited computational power useful in a parasitology 
research laboratory.

Methods
Trichinella spiralis life cycle in CD1 mice
Seven-week-old, outbred SPF CD1 female mice (Charles 
River Laboratories, Lyon, France) were used to maintain 
the T. spiralis life cycle and for in vivo drug testing. Ani-
mal procedures complied with Spanish (RD 53/2013) and 
European Union (Di 2010/63/CE) regulations regarding 
animal experimentation for the protection of laboratory 
animals. The accredited Animal Experimentation Facili-
ties (registration number: PAE/SA/001) of the University 
of Salamanca (USAL) were used for the procedures. The 
USAL’s Research Ethics Committee approved the proce-
dures used in this study (ref. CEI 1080 and CEI 1062). All 
efforts were made to minimize animal suffering. Animals 
were maintained in USAL animal facilities in standard 
polycarbonate cages, with controlled 12 h light and dark 
periods, temperature of 23–25  °C, and food and water 
ad  libitum. The T. spiralis strain used in this study was 
originally isolated in 1962 from a naturally infected wild-
cat (Felis silvestris MFEL/SP62/ISS48) from Pola de Lena 
(Asturias, Spain) [23]. It was maintained in Swiss mice 
(CD-1) in passes every 6 months with oral doses of 600 
first-stage muscular larvae.

First‑stage larvae (L1) culture and treatment
Mice infected with 600 L1 at least 40 days post-infection 
were killed, and their carcasses were extracted in asep-
tic conditions. Carcasses were minced and digested in 
a solution with 0.7% HCl, 0.5% pepsin, and 0.85% NaCl 
for 90  min, 37 ºC, in agitation. Digested carcasses were 
filtered through a gaze maze, and L1s were collected in 
a sedimentation vase. The supernatant was removed by 
aspiration, and L1s were washed three times with a ster-
ile 0.85% NaCl solution. L1s were suspended in lysog-
eny broth (LB) (10  g/l NaCl, 10  g/l peptone, 5  g/l yeast 
extract) and placed into 96-well plates at a ratio of 30–50 
L1/well in a final volume of 200 µl. Albendazole and 
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mebendazole were used as reference drugs at 20  µM. 
Both LB and DMSO 1% were used as untreated con-
trols for the assay. The external wells of the plates were 
filled with sterile water to avoid a border effect. Plates 
were incubated at 37 ºC for up to 72 h before microscope 
assessment and image acquisition.

Image capture, labeling, and data augmentation
We developed a system for image acquisition (AxiWorm) 
assisted by a robotic arm using an AxiDraw minikit (Evil 
Mad Scientist, Sunnyvale, Ca, USA) modified using 
3D-printed parts to fit 96-well plates. The arm was cou-
pled to an inverted microscope Eclipse Ts2 (Nikon, 
Tokyo, Japan) and a Redmi 7 smartphone (Xiaomi, Haid-
ian, China) (Fig. 1) that imaged the entire bottom of the 
well using customary python scripts. Every cultured L1 
was manually labeled in all captured photographs using 
the LabelImg python library (Fig. 1).

Photographs could include debris from culture media 
or digestion rests that remained unlabeled. Every L1 in 
the images was classified as loose or serpentine in shape 
and considered “healthy larvae” with integrity of neuro-
muscular function (Fig. 2a) or as “damaged larvae” with 
coiled shapes indicating loss of muscular tone which 
perturbs free movement (Fig.  2b). A total of 1309 pho-
tographs, containing 109 null images, were annotated, 
and the dataset was split into training, validation, and 
test sets with a 70/20/10 ratio. Data augmentation was 
applied to the training set using the web platform Robo-
flow [24] applying random changes in brightness (± 25%), 
exposure (± 25%), horizontal bounding box flip, bound-
ing box rotation (± 15%), blur (up to 10 px), noise (up to 
2%), and mosaicism.

YOLOv5 model training and validation
The YOLOv5 (Ultralytics) model was trained without 
pre-trained weights with patience set to 25 and batch 
size to 16. From the available model sizes, we selected 
YOLOv5x and used default hyperparameter settings. 
Input images were scaled to 640 × 640 pixels. Training 
processing was performed on a Windows 10 computer 
with Intel (R) Core i7-13700KF 3.40  GHz (16 × core), 
RAM 32  GB DDR5 5600  MHz 2 × 16  GB CL36, and 
a GeForce RTX 3060 graphics card with 12  GB of 

Fig. 1  Images showing the disposition of the AxiWorm system. a Hardware of AxiWorm with the robotic arm over the microscope. b Screenshot 
of the interface developed to handle the system

Fig. 2  Class definition of the cultured first-stage larvae used 
in the model. a Healthy larvae showing a relaxed or loose shape. b 
Larvae damaged by the treatment showing a coiled shape
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dedicated RAM GDDR6 (NVIDIA, Santa Clara, CA, 
USA) using PyTorch 2.0.1 (Linux Foundation, San Fran-
cisco, CA, USA) with CUDA 12.2.r12.2 (NVIDIA).

The internal validation of the model was performed 
using the “val function” included with the package 
using the images reserved for that purpose. Mean aver-
age precision (mAP) is used to evaluate object detec-
tion models involving the number of classes and the 
average precision for each class. Also, recall [true posi-
tive/(true positive plus false positive)] and precision 
[true positive/(true positive plus false negative)] values 
were calculated. The loss value was used to reflect the 
error between the final prediction result and the actual 
true value for box placement, probability of the object 
existing in the region of interest, and classification 
accuracy.

External validation for larval recognition and classification
For external validation, 100 new randomly selected 
images were augmented three times by random rotations 
and mirroring. The 300 resulting images were evalu-
ated by three independent technicians and the YOLOv5 
model using a confidence threshold of 0.4. The observers 
were given instructions to read 300 images as in a rou-
tine laboratory assay, counting and classifying the larvae 
in both groups: healthy or damaged. Then, the produced 
numbers were analyzed to account for inter- and intrao-
bserver variability and to compare human and YOLOv5 
results.

AxiWorm validation for larval burden determination 
in an animal trichinellosis model
In vivo assay of antiparasitic drugs in T. spiralis requires 
the determination of muscular larvae burden by count-
ing the number of larvae per gram of tissue. To assess 
whether the model could be used to reduce the laborious 
task of counting the larvae, 12 mice were divided into two 
groups of six animals and infected with 600 L1 by oral 
gavage [25]. After infection, one group was treated with 
50 µg albendazole per gram of mice at days 13, 14, and 
15 post-infection, and the other was kept untreated as 
an infection control. At day 40 post-infection, the mice 
were killed, and the back limbs were weighed and ground 
using two 40-s, 6  m/s cycles in a FastPrep system with 
6/7 steel beads. Every sample was individually digested in 
pepsin as above and placed across a whole row of wells 
in a 96-well plate. Then, images were captured using the 
AxiWorm system, and the total number of larvae in the 
images was counted both by a human observer twice and 
averaged and by the YOLOv5 model using a confidence 
threshold of 0.4 to compare both counting techniques.

Data analysis
Statistical analysis was performed using R Studio soft-
ware [26] with non-parametric tests (Kruskal–Wallis), 
adjusted by Holm and pairwise comparisons by Dunn 
test. P-values < 0.05 were considered statistically signifi-
cant. Coefficients of variation (CVs) were calculated as 
the standard deviation of the measurements divided by 
the mean. Tendency lines and confidence intervals were 
calculated with the smooth function of “ggplot2” and a 
linear model. Plots and figures were made using “ggplot2” 
and “ggstatsplots” [27]. Lastly, we used the Bland-Altman 
plot to identify biases, and the relative precision of the 
compared measurement techniques was calculated using 
the “BlandAltmanLeh” package [28].

Results
Image capture and labeling
A total of 1309 photographs, containing 109 null images, 
were automatically captured using AxiWorm. After 
applying the augmentation, the dataset consisted of 
11,855 labeled photographs. A sum of 27,478 larvae were 
manually labeled. There was an average of 21 images per 
photograph. A total of 12,571 of the annotated L1 images 
were labeled as healthy and 14,907 as damaged.

Larval recognition classes and internal validation
The model was trained for a total of 280 epochs that took 
approximately 9  days of computational power. Most of 
the improvement in the model occurs during the initial 
epochs reaching a mean average precision at confidence 
0.5 (mAP50) over 0.90 in epoch 5. Also, precision and 
recall both reached high levels in early epochs and stood 
stable during the rest of the training. However, the metric 
for mAP50:95, which refers to the mean average preci-
sion across confidences 0.5 to 0.95, kept improving slowly 
over 255 epochs after which the training was stopped 
by the patience settings. Final values of mean precision 
peaked at 0.957 for mAP50 and 0.7 for mAP50:95. In 
both cases, the individual values of mAPs for damaged 
larvae were slightly higher than for healthy ones (Fig. 3).

The internal validation of the model was performed 
with the images from the original validation set. The vali-
dation yielded a precision value of 0.937 and a recall of 
0.927. The model classified 98% of the damaged larvae 
and 92% of the healthy larvae predicted in the images 
correctly (Fig. 4).

External model validation of larval recognition
After training the model to a point where the internal 
validation was up to the required standard, we com-
pared the measurements of our model with the ones 
performed by three human observers. In the repeated 



Page 5 of 10Sánchez‑Montejo et al. Parasites & Vectors           (2025) 18:36 	

measurements, the differences in the number of lar-
vae predicted by the model are lower than when made 
by human observers (Fig.  5A). Furthermore, Fig.  5B 
shows that for the human observers, the differences 
in L1 counts greatly increase with the number of lar-
vae, while for the model the slope is not as steep. This 
variability further increases when larvae are not just 

counted but classified and the percentage of healthy 
larvae is accounted for (Fig. 5C).

Using the different measurements of the total number 
of larvae for each image, the coefficient of variation (CV) 
was calculated for each observer and set of images. Then, 
the measurements were compared by Kruskal-Wallis 
for differences in median variation giving a statistically 

Fig. 3  Visual representation of the scale of change (0 to 1) in the evaluation metrics across training epochs in the training and validation set

Fig. 4  Performance of the model by internal YOLOv5 validation. a Confusion matrix indicating the distribution of true-positive and false-negative 
predicted larvae. b Image showing the application of the model in a plate with healthy larvae. c Image showing the application of the model 
but with damaged larvae by albendazole
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Fig. 5  a Graphical representation of the differences in the numbers of counted worms between replicates by each observer for each L1 class 
and for the total number of larvae. b Linear model of the difference among the three measurements of each observer against the total number 
of larvae counted. c Linear model of the difference in the average percentage of healthy larvae predicted for the three images against the total 
number of larvae counted

Fig. 6  Coefficient of variation (CV) estimates of the measurements of the total number of larvae. Statistically significant (Padj < 0.05) comparisons are 
shown by pairwise Dunn test
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significant difference (X2(3) = 57.87, p = 1.03e−12). Fur-
thermore, pairwise comparisons were performed by 
Dunn test. All the human observers’ CVs were signifi-
cantly higher than those for the YOLOv5 model (Fig. 6). 
Also, the CV scores for the human observers varied sig-
nificantly between each other.

After discovering that the model had less variabil-
ity than the human measurements, we wanted to test 
whether the model could be used as a substitution of 
manual measurements to perform screening of antipar-
asitic drugs. Therefore, we averaged the percentage of 
healthy larvae that each human user estimated for each 
image and then compared the differences with YOLOv5 
estimates. We observed that using a Bland-Altman plot 
to compare the measurements of the model with the 
human observers, only seven of the estimations were out 
of the confidence interval (Fig. 7a). Additionally, in a his-
togram we classified how the differences in the measure-
ments were distributed (Fig. 7b). With an average error of 
5.8%, we detected that when estimating the vitality of the 
images, the model only erred by > 10% in 21 out of 100 
images.

Further application of AxiWorm includes counting the 
total number of T. spiralis larvae in mouse tissue when 

assaying putative antiparasitic drugs in murine models. 
In this experiment, larvae are not classified, and only the 
total number of worms is accounted for. We observed 
that both measurements gave similar results when count-
ing the number of larvae in the images (Fig.  8a). Fur-
thermore, the statistical analysis by ANOVA indicated 
that the treatment (p = 0.1720), measurement tech-
nique (p = 0.8322), and interaction between both factors 
(p- = 0.7263) were not significant for explaining the num-
ber of larvae counted for each sample. Furthermore, we 
compared the measurements using a Bland-Altman plot, 
which shows that most of the measurements were within 
the confidence interval, with only 12 of the 234 points 
evaluated falling out of the confidence interval (Fig. 8b).

Discussion
The conventional method of manual microscopy rou-
tinely used in meat inspection at abattoirs, laboratory 
screening of new molecules, and preclinical studies in 
animal models of trichinellosis is not only laborious but 
also subjective. This study introduces a novel approach, 
called AxiWorm, utilizing image recognition based on 
deep learning for in vitro drug screening and larva count-
ing in experimentally infected and treated mice. Previous 

Fig. 7  a Bland-Altman plot comparing the predictions made by the mean of the human measurements against YOLOv5 predictions. b Histogram 
showing distribution of the differences in the percentage of vitality comparing humans versus YOLOv5

Fig. 8  a Estimated number of larvae per sample by experienced technicians compared to YOLOv5 model. b Bland-Altman plot comparison 
between the measurements of the experienced technicians and YOLOv5 model
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work has shown that larvae exhibit conformational 
changes induced by different stresses in culture, changing 
from free-moving states to coiled forms [29]. We believe 
that this change can be leveraged as a mechanism to infer 
anti-Trichinella drug activity in culture, which would 
help screen for active compounds without needing to uti-
lize an extensive number of animals in in vivo assays.

Our model has proven successful to differentiate 
between healthy and damaged T. spiralis larvae, cor-
rectly classifying 92% and 98%, respectively, while being 
unaffected by broken larvae, artifacts, small size objects, 
low contrast, lighting conditions, or fuzzy objects. Cur-
rently, there are published models showing comparable 
mAP (mean average precision) and precision values. For 
example, a fruit detection model trained with YOLOv5 
resulted in an mAP of 0.893 [30]. Moreover, a model that 
detects mold on food surfaces showed an mAP of 0.996 
[31]. Other models for sperm cell detection, heavy vehi-
cle detection, and sunflower seed classification have also 
been trained with this object-detection model (YOLOv5), 
obtaining good mAP values [17, 32, 33].

The AxiWorm system includes image scanning with a 
smartphone and an inexpensive robotic arm compatible 
with any standard microscope and operated through a 
customized app. When paired with the YOLOv5 model 
that we developed, it took < 2 min to capture, count, and 
classify a 96-well plate. This drastically reduces work bur-
den compared with manual screening, which can take up 
to an hour per plate. Our prototype scanner and model 
demonstrated exceptional utility and efficiency, thus 
making for a more efficient drug screening assay and 
increasing the capacity of our laboratory to assay more 
putative drugs that can become pharmaceutical candi-
dates. Furthermore, the reduction in manual steps in 
favor of semi-automatic recording of the results reduces 
human error in the handling and therefore increases the 
repeatability of the results.

Further experimentation aimed to compare how the 
model performed against different human observers. 
Manual counting and classification by experienced tech-
nicians showed low consistency, as their coefficient of 
variation (CV) scores varied significantly between indi-
viduals. This indicated that the manual counting method, 
usually considered the “gold standard,” varied greatly 
between observers. Meanwhile, our YOLOv5 model CV 
was significantly lower than for manual counting, thus 
confirming the reliability of the model and its utility in 
reducing observer bias and increasing repeatability. Nev-
ertheless, it seems that, from the 300 images that were 
augmented and evaluated, the model counted and clas-
sified two the same and one slightly different, suggest-
ing that one of the modifications that we applied to the 
images interfered with the model’s ability to properly 

read the images. This source of variability can be further 
addressed by re-training the model with a new batch of 
augmented images. Also, more recent architectures such 
as YOLOv7, YOLOv8, or YOLOv9 offer improved object 
detection accuracy, stronger loss functions, and greater 
efficiency in label assignment and model training [34–
36]. Further studies could re-train our dataset with other 
models and evaluate whether the mistake when adding 
modifications to the images is avoided during detection. 
When contrasting the evaluation of the percentage of 
healthy larvae per well, we observe that both the human 
observer average (usually considered the gold standard) 
and the model’s predictions agree on most of the points 
as per Bland-Altman comparison. This is particularly 
important when planning to use it as a semi-automatic 
tool in drug screening assays. Furthermore, when we 
compare plain differences in the percentage of vitality 
for each image, we observe that 92% of the images have 
< 20% error. These levels of error are usually trivial in our 
screening assays where we usually observe a binomial 
response in which most larvae are alive or dead at the 
selected concentration.

Finally, AxiWorm was applied in an in vivo assay to test 
the number of worms per gram of tissue. The tool suc-
cessfully counted the total number of larvae in both the 
control and treatment groups. We are only interested in 
detecting the quantity of larvae and not classifying them 
by their viability, as they are only counted and not cul-
tured. Bland-Altman measurements provided compa-
rable results between trained observers and the model 
when enumerating the total number of larvae in the 
images. In the pictures, there was some overestimation of 
the number of larvae due to their poor quality resulting 
from the larval collection process, which involved issues 
such as indigestible muscle pieces or broken larvae. How-
ever, future studies may enhance accuracy by refining the 
in vivo collection method or retraining the images with 
a new model including new YOLO versions in the future 
just for this purpose, which could have a great impact on 
the estimation of the number of worms per gram of tissue 
in other fields such as the meat industry [37, 38]. Overall, 
this automated system proved to be useful not only with 
the initial screening of compounds but also in the next 
step of antiparasitic drug discovery, in vivo assays.

Conclusions
We have developed AxiWorm, a tool based on AI for 
in  vitro and in  vivo assay for drug finding in T. spira-
lis providing an overall balanced model that precisely 
counts and classifies L1 larvae of T. spiralis in pictures, 
therefore reducing the amount of time spent in the labo-
rious process of drug screening in parasites and reducing 
the observer bias.
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