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Abstract 

Background Insecticide-treated nets (ITNs) provide protection against malaria vectors through their insecticidal 
action and as a physical barrier. However, insecticide resistance in malaria vectors has diminished their efficacy, threat-
ening future malaria control. To reinforce ITNs’ effectiveness, evaluating non-insecticide-based tools in an integrated 
control approach is worthwhile. In the present study, a mosquito collection technique, the Host Decoy Trap (HDT), 
was coupled with standard ITNs as a complementary intervention, and its effectiveness against insecticide-resistant 
Anopheles gambiae s.l. was assessed in experimental huts.

Methods An HDT combined with either permethrin or deltamethrin-treated nets was tested against field-collected 
An. gambiae mosquitoes from Za-Kpota (Benin Republic) in experimental hut trials following WHO Phase II guide-
lines. Effectiveness was assessed in terms of mosquito mortality, blood feeding and exophily rates. Prior to hut trials, 
an insecticide susceptibility test was performed on field-collected An. gambiae s.l. mosquitoes to screen for pyrethroid 
resistance.

Results A significantly higher mortality rate was observed against both susceptible and field-collected An. gambiae 
s.l. mosquitoes when ITNs were used with HDT (ranging from 80.18 to 99.78%) compared to alone (2.44–100%). The 
combined use of treated nets with HDT resulted in a lower rate (ranging from 0 to 10.83%) of blood feeding com-
pared to the treated nets alone (ranging from 0 to 16.93%). When treated nets were hung next to the HDT, they sig-
nificantly limited the number of insecticide-resistant mosquitoes that exited experimental huts compared to the nets 
alone.

Conclusions The use of HDT alongside ITNs has been demonstrated to significantly reduce the likelihood of vector-
host contact by insecticide-resistant An. gambiae. A combination of HDT and treated nets reduced the number of live 
An. gambiae mosquitoes as well as the blood-feeding rate. Furthermore, it reduced the number of mosquitoes likely 
to leave the huts and enter the natural environment. Altogether, our findings highlight the potential of integrated 
approaches combining non-insecticidal trapping devices with ITNs when designing future integrated vector control 
strategies.
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Background
The continued use of insecticide-treated nets (ITNs) 
represents a core strategy against malaria transmission 
in endemic countries [1, 2]. Unfortunately, the growing 
phenomenon of vector resistance to existing insecticide 
products has led to a decline in the effectiveness of ITNs 
in reducing malaria prevention [3–5]. Many studies in 
areas of high vector resistance have revealed a decline 
in the efficacy of ITNs [3–7]. A recent meta-analysis of 
data from bioassay and experimental hut studies showed 
that community protection provided by these existing 
ITNs falls rapidly as insecticide resistance emerges [8]. 
According to World Health Organization (WHO) rec-
ommendations, exploring novel vector control strate-
gies, comprising a mixture of non-related insecticides, is 
imperative to ensure the success of insecticide resistance 
management strategies [9, 10]. The efficacy of new ITNs 
combining pyrethroids and piperonyl butoxide (PBO) has 
been demonstrated in laboratory and field trials against 
pyrethroid-resistant malaria vectors [5, 11–15]. Despite 
the recent recommendation for their deployment in areas 
where the main malaria vectors exhibit metabolic resist-
ance mediated by cytochrome P450s monooxygenases 
[16, 17], there is still uncertainty regarding long-term 
effectiveness of pyrethroid-PBO ITNs [6]. Recent stud-
ies have indicated that the pyrethroid-PBO-based nets 
are also becoming less effective [6, 18]. Two additional 
new-generation nets, Royal Guard and Interceptor G2, 
have also shown significant efficacy against pyrethroid-
resistant Anopheles gambiae s.l., making them potential 
cornerstones in future malaria prevention [19, 20].

Although these new generation nets represent an 
important contribution to vector control, a resistance 
phenomenon against insecticides is an evolutionary 
adaptation that can not only shorten the lifespan of cur-
rently available insecticide-based tools but ultimately 
undermine the longevity of newly developed insecticides, 
too [21]. Considering the recent history of the decline 
in the effectiveness of pyrethroid-PBO-based nets [6, 
18], it is reasonable to question the long-term perfor-
mance of these new-generation nets also. A study con-
ducted in Burkina Faso highlighted that resistance still 
led to decreased mosquito mortality 24 h post-exposure 
to Interceptor G2, suggesting a possible reduction in the 
overall effectiveness of this net in areas with significant 
pyrethroid resistance [22]. Moreover, the limited ability 
of currently deployed tools to control insecticide-resist-
ant vectors highlights the integration of non-insecticide-
based tools in vector control as a potential long-term 
approach to sustain the efficacy of current and incoming 
ITNs against malaria vectors [7].

Recently, there has been considerable innovation 
in mosquito sampling tools, several of which show 

considerable potential as non-insecticidal trapping 
devices with which to diversify the methods used to con-
trol malaria vectors and, ultimately, prevent malaria cases 
[23, 24]. The Host Decoy Trap is one such device, which 
employs a combination of human-associated stimuli, 
including olfactory, visual and thermal cues, to lure and 
kill host-seeking female mosquitoes [25]. Compared to 
the gold standard human landing catch (HLC) tool, HDT 
was found to be able to trap up to ten times the number 
of Anopheles mosquitoes [25] and has been suggested as 
a potential candidate for operational use [26]. However, 
it has yet to be tested as a possible vector control tool. 
Due to its host-mimicking properties, deploying HDT 
in combination with bednets warrants investigation as 
a possible strategy for reducing the number of mosqui-
toes attempting to bite the host under the net by luring 
away and killing mosquitoes without using insecticides. 
Herein, we report entomological evidence that an inte-
grated system combining HDT with pyrethroid-treated 
nets significantly increases the mortality of both suscep-
tible and resistant An. gambiae s.l. mosquitoes.

Methods
Study site
Release/recapture experiments were carried out in exper-
imental hut trials (EHTs) at the field station of the Tropi-
cal Infectious Diseases Research Center (TIDRC) of the 
University of Abomey-Calavi located in Ganhoua vil-
lage in Za-Kpota district (07°10′58.4″ N, 002°17′15.3″ 
E), Southern Benin. In Za-Kpota, malaria transmission 
is perennial. Rice and vegetable production represent 
the primary agricultural activities and provide optimal 
breeding habitats for An. gambiae mosquitoes; there is 
significant pesticide use to protect the agricultural prod-
ucts [27].

Mosquito collection and insecticide susceptibility assays
Anopheles mosquito larvae and pupae were collected 
from breeding sites near the experimental hut station 
at Za-Kpota between June and July 2023 using the dip-
ping method [28]. They were transferred in labeled plas-
tic bottles to an insectary and reared until the adult stage 
for insecticide-susceptibility testing. Mosquitoes were 
maintained under standard insectary conditions with a 
relative humidity of 70 ± 8%, an ambient temperature of 
27 ± 2  °C and a 12:12 light and dark period. The insecti-
cide susceptibility profile of 3–5-day-old F0 adult females 
reared from field-collected An. gambiae s.l. were assessed 
according to WHO tube test protocol [29]. Briefly, mos-
quitoes were exposed to filter papers impregnated with 
0.05% alpha-cypermethrin, 0.75% permethrin and 0.05% 
deltamethrin (pyrethroids). Approximately 25 female 
mosquitoes were introduced into each of six tubes lined 



Page 3 of 10Akoton et al. Parasites & Vectors          (2025) 18:166  

with either insecticide-impregnated paper (test tubes) or 
non-impregnated papers (control tubes). For each insec-
ticide susceptibility assay, 150 female mosquitoes were 
used, divided into four test tubes (100 mosquitoes) and 
two control tubes (50 mosquitoes). The mortality was 
recorded 24 h post-exposure.

Experimental hut trials
Mosquito strains
An insecticide-susceptible laboratory reference strain of 
An. gambiae s.s. (Kisumu), originating from Kenya, was 
maintained in the insectary [30]. The F0 adults of field-
collected An. gambiae s.l. were obtained from larval col-
lections conducted in the Za-Kpota district as described 
above.

Description of treatments used in experimental hut trials
The standard HDT was prepared using the methodology 
previously described by Abong’o et al. [31]. The trap con-
sists of a bucket fitted with an external black cloth, which 
provides a visual cue and is wrapped with a transparent 
adhesive plastic sheet (Barrettine Environmental Health, 
UK) to catch mosquitoes as they land. A watertight bag 
containing approximately 15  l water heated to approxi-
mately 80  °C as measured using an infrared thermom-
eter (IF-710-EUR) is placed inside the bucket. The water 
temperature inside the bag is sufficient to maintain a sur-
face temperature across the cloth of 35 ± 5 °C for at least 
12  h. This component of the standard HDT, designated 
the “HDT bucket unit”, provides high-contrast visual 
stimuli and human-equivalent thermal stimuli to induce 
close-range attraction and landing behaviour in host-
seeking mosquitoes. In previous studies where the HDT 
was used outdoors, an olfactory cue was provided by a 
person resting in a small tent, whose odour was mechani-
cally pumped towards the bucket and released within a 
few centimetres of its base [25, 31]; however, the present 
experiment took place inside experimental huts, and the 
HDT bucket unit, hereafter “HDT” in this study, was 
used without the tent odour component. Instead, a per-
son sleeping on a bed under a bednet provided the source 

of human odour to stimulate host-seeking behaviour. The 
HDT was positioned 50 cm from the head of the bed. The 
bednets were standard pyrethroid-based nets in EHTs, 
arranged as shown in Additional file 1.

Six net treatments were tested in the EHTs. All the bed-
nets were 180 cm long × 170 cm wide × 170 cm high. The 
specifications of each bednet are described in Table 1.

Release/recapture of field‑collected An. gambiae mosquitoes
Before the release/recapture experiments, six volunteers 
provided informed consent to participate in the study. 
Awareness sessions were conducted with the head of 
Ganhoua village and volunteers (to sleep under the bed-
nets) to explain the study’s objectives. To reduce daily 
variability in olfactory products from volunteers, no con-
sumption of beer was permitted during the study [32]. 
The volunteers also refrained from using soap, fragrance 
and repellent products applied on their body and did not 
use tobacco for 12  h before and throughout the testing 
period.

The three different types of bednet (UTN, OS, P2) were 
hung in the huts either alongside an HDT or without an 
HDT. The bednets were deliberately punctured with six 
holes of 16   cm2 (4 × 4  cm) following WHO guidelines 
[33] to simulate a damaged net as might be expected 
following long-term use or accidental damage. Prior 
to their release into the hut, all mosquito strains used 
were starved for 24 h with access to cotton soaked with 
water only. Release/recapture experiments were car-
ried out according to the WHO protocol [33]. Briefly, 
each night (20:00  h), 100 adult female mosquitoes, 5 
days old, were released in each hut and monitored until 
morning (05:30  h). In the morning, released mosqui-
toes were recaptured and their point of recapture noted 
(from within the hut, on the HDT, inside the nets or from 
the veranda). They were scored as dead or alive and as 
blood-fed or unfed. Five replicates were performed for 
each of the six treatments, and this design was carried 
out for An. gambiae s.l. from wild-caught larvae and was 
repeated in the same way using the susceptible laboratory 
Kisumu strain, making a total of 500 released mosquitoes 

Table 1 Specifications of bednets tested in experimental hut trials

No. Treatments Abbreviation Bednet manufacturer Net fabric type and weave Active ingredient doses

1 Untreated Net UTN Bayer AG, Leverkusen, Germany Polyester fabric (100 mesh size) No insecticide product

2 Untreated Net + HDT UTN + HDT

3 Olyset net OS Sumitomo Chemical, Tokyo, Japan Polyethylene fibers (150 mesh size) Permethrin at 20 g/kg

4 Olyset net + HDT OS + HDT

5 PermaNet 2.0 P2 Vestergaard Frandsen, Lausanne, Switzerland Polyester fabric (100 mesh size) Deltamethrin at 1.4 g/kg

6 PermaNet 2.0 + HDT P2 + HDT
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per strain per treatment to ensure an adequate sample 
size. The six volunteer sleepers were allocated to the six 
treatments following a randomized Latin square experi-
mental design to avoid any attractiveness and sampling 
bias. The recovery rate was between 89 and 95% across 
all treatments (Table 2); as we could not be certain of the 
outcomes for the small number of non-recovered mos-
quitoes, the following entomological parameters [33] 
were calculated as proportions relative to the total num-
ber of mosquitoes recaptured.

• Twenty-four-hour mortality rate: the proportion of 
mosquitoes killed in 24 h relative to the total number 
recaptured;

• HDT mortality rate: the number of mosquitoes 
recorded dead from the HDT as a proportion of all 
recaptured dead mosquitoes (24-h mortality rate);

• Blood-feeding rate: the number of mosquitoes col-
lected and found to be blood-fed as a proportion of 
all mosquitoes recaptured;

• Exophily rate: the number of mosquitoes collected 
from the verandas as a proportion of all mosquitoes 
recaptured.

Molecular species identification of field‑collected 
mosquitoes
To determine species composition of field-collected 
An. gambiae s.l. mosquitoes used in EHTs, a subset of 
approximately 40 alive and 40 dead females per treatment 
were identified molecularly using the protocol described 
by Santolamazza et al. [34].

Data analysis
Data were recorded and entered into Microsoft Excel and 
were analyzed using R Statistical software version 4.3.0 
[35].

Susceptibility test results (24-h mortality) were inter-
preted following the WHO criteria [29]. When mortal-
ity was ≥ 98%, the mosquito population is considered 
susceptible to the insecticide; a mortality rate between 
90 and 97% implies suspected resistance, and < 90% indi-
cates confirmed resistance to the insecticide. Since no 
mortality was recorded in controls, Abbott’s formula was 
not applied to correct the mortality rates.

All parameters from EHTs were analysed using a gen-
eralized linear mixed model (GLMM) with a logit link 
and binomial distribution. Mortality data recorded in all 
strains were analyzed using GLMM with a beta-binomial 
distribution. All models were fitted with sleepers (vol-
unteers) and nights as random effects and treatment as 
fixed effects using the lme4 package [36]. The final mod-
els were selected according to the Akaike information cri-
terion (AIC). Model fitting was evaluated by performing 
a quantile test, uniformity test and dispersion test using 
the DHARMa R package [37]. Two levels of comparison 
were determined for the entomological parameters: (i) 
Net + HDT vs Net alone; (ii) UTN + HDT vs ITNs + HDT. 
Ninety-five per cent confidence intervals (95% CIs) of 
adjusted odds ratio (ORs) were also determined using a 
suitable regression model by computing pairwise mar-
ginal means separately for each suborder, adjusting the p 
value using the Tukey method for multiple comparisons 
(package emmeans) [38]. All analyses were set at signifi-
cance threshold of p < 0.05.

Results
Species composition of field‑collected An. gambiae s.l.
Of the 2770 recaptured females of field-collected An. 
gambiae s.l. specimens from experimental hut tri-
als, 415 (14.9% of recaptured mosquitoes) were sub-
jected to molecular species identification. Anopheles 
coluzzii (90.78%) was the predominant sibling species in 
this mosquito population followed by An. gambiae s.s. 
(4.69%) and hybrids (4.53%).

Table 2 Mosquito recapture rates across all treatments

No. Treatments Kisumu Wild Anopheles gambiae s.l. 

Total released Total recaptured Percentage ± standard 
error (SE)

Total released Total recaptured Percentage ± standard 
error (SE)

1 Untreated net 500 449 89.8 ± 3.25 500 450 90.0 ± 1.76

2 Untreated net + HDT 500 471 94.2 ± 1.39 500 459 91.8 ± 1.36

3 PermaNet 2.0 500 456 91.2 ± 2.89 500 469 93.8 ± 1.36

4 PermaNet 2.0 + HDT 500 454 90.8 ± 2.96 500 466 93.2 ± 0.37

5 Olyset net 500 444 88.8 ± 3.44 500 451 90.2 ± 0.37

6 Olyset net + HDT 500 471 94.2 ± 1.02 500 475 95.0 ± 1.10

Total 3000 2745 3000 2770
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Insecticide resistance profile of field‑collected An. gambiae 
s.l.
The field-collected An. gambiae s.l. were resistant to all 
insecticides tested according to WHO criteria. Spe-
cifically, they were resistant to permethrin, alpha-
cypermethrin and deltamethrin with mortality rates of 
26.2 ± 6.59%, 89.8 ± 0.86% and 54.25 ± 8.98%, respectively. 
No mortality was recorded in the control.

Twenty‑four‑hour mortality rates in experimental hut trials
Overall, the treatments combining ITNs and HDT dis-
played significantly higher mortality compared to those 
without HDT for both the laboratory strain of An. gam-
biae s.s. (Kisumu) (df = 1, N = 915, χ2 = 28.351, p < 0.0001) 
and field-collected An. gambiae s.l. mosquitoes (df = 1, 
N = 1825, χ2 = 295.040, p < 0.0001) (Fig. 1A–C).

Mortality rates recorded in the field-collected An. 
gambiae s.l. varied from 80.18 to 95.5% in the pres-
ence of HDT + ITNs systems. In these combinations, 
HDT alone lured and killed > 57% of released mos-
quitoes with 76.91% mortality rate in UTN + HDT, 
63.58% in OS + HDT and 57.3% in P2 + HDT (df = 1, 
N = 925, χ2 = 27.033, p < 0.0001) (Fig.  1A). Compared to 
UTN + HDT, mortality in field-collected An. gambiae 
s.l. mosquitoes was significantly higher (5.3 times) with 

P2 + HDT (OR = 5.3; CI 2.81–10.05; p < 0.0010) (Fig. 1D). 
However, no significant difference was observed with 
OS + HDT (OR = 1.21; CI 0.79–1.85; p = 0.6718) com-
pared to UTN + HDT (Fig. 1D).

With the susceptible Kisumu mosquitoes, HDT + ITNs 
induced mortality ranging from 80.89 to 99.78%. The 
HDT itself was responsible for > 55% mosquito mortal-
ity in the presence of all net types: UTN (HDT mortal-
ity rate 75.16%), OS (HDT mortality rate 55.41%) and P2 
(HDT mortality rate 64.76%) (df = 1, N = 942, χ2 = 26.372, 
p < 0.0001) (Fig. 1B). HDT displayed no differential attrac-
tiveness to either susceptible or field-collected An. gam-
biae s.l. mosquitoes (OR = 1.10; CI 0.79–1.53; p = 0.5704) 
in the presence of UTN.

Blood‑feeding rate
In the experimental hut trial, it was observed that the 
very low proportion of mosquitoes able to blood-feed 
was especially pronounced when HDT was combined 
with ITNs (Fig.  2), although blood-feeding rates were 
too low to enable statistical analysis. In field-collected 
An. gambiae s.l., a reduction in the proportion of blood-
fed mosquitoes was observed when UTN was com-
bined with HDT (8.28%; CI 6.20–10.89) compared to 
UTN alone (11.78%; CI 9.12–14.59). Only 1.29% (CI 

Fig. 1 Proportion of killed mosquitoes according to (A) treatment and field Anopheles gambiae s.l., (B) treatment and Kisumu. Comparative odds 
ratio (OR) of mortality rate (C) between Net + HDT and Net alone and (D) between UTN + HDT and ITNs + HDT. Error bars in (C) and (D) represent 
95% confidence intervals. P2 PermaNet 2.0, OS Olyset net, UTN untreated net, HDT (Host decoy trap_bucket unit), ITNs insecticide-treated nets
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0.56–2.66) of field-collected An. gambiae s.l. were 
blood-fed when exposed to PermaNet 2.0 in the pres-
ence of HDT (vs. 4.48%; CI 2.74–6.20 with P2 alone). In 
the conditions where the Olyset net was combined with 
HDT (OS + HDT), the proportion of blood-fed mosqui-
toes recorded was very similar (0.84%; CI 0.21–1.90 with 
OS + HDT vs. 0.89%; CI 0.22–1.99 with OS alone). The 
addition of an HDT also decreased the blood-feeding 
rate in the susceptible Kisumu strain when a UTN was 
present, from 16.93% (CI 12.63–18.79) to 10.83% (CI 
7.87–12.90); this parameter was not discernibly different 
when treated nets were tested (ranging from 0 to 0.5%; CI 
− 0.07–1.13).

Exophily rate
In Kisumu strain, the treatments combining P2 + HDT 
(5%; CI 2.69, 6.56) and OS + HDT (5.30%; 3.27, 7.34) dis-
played significantly lower exiting rates compared to the 
treated nets alone (OR = 0.14, CI 0.07–0.26, p < 0.001 
for P2; and OR = 0.32, CI 0.17–0.59, p < 0.001 for OS) 
(Table 3). The same trend was observed in field-collected 
resistant An. gambiae s.l. when the treated nets were 
hung next to HDTs (8%; CI 5.29, 10.16 for P2 + HDT 

and 5.47%; CI 3.42, 7.53 for OS + HDT) compared to the 
treated nets alone (OR = 0.15, CI 0.09–0.24, p < 0.001 
for P2; and OR = 0.12, CI 0.07–0.21, p < 0.001 for OS) 
(Table  3). Exophily rates were also reduced with UTN 
alongside HDT compared to UTN alone, although this 
was only significant in the Kisumu strain (OR = 0.27, CI 
0.17–0.45, p < 0.001).

Discussion
This study presents evidence that using the Host Decoy 
Trap (HDT) indoors in combination with pyrethroid-
only nets may enhance the efficacy of such vector 
control strategies in the context of growing insecti-
cide resistance. Vector mortality was enhanced when 
HDTs were used alongside widely used standard bed-
nets (Olyset net and PermaNet 2.0) in both pyrethroid-
resistant and laboratory-susceptible populations of 
the major malaria vector An. gambiae s.l. However, 
these standard bednets have lost much of their effi-
cacy against resistant populations, as shown in pre-
vious studies [3–5, 39]. A significant proportion of 
observed mortality in field-caught resistant mosqui-
toes was attributable to the HDT (ranging from 57.3 

Fig. 2 Proportion of blood-fed mosquitoes according to treatment. Error bars represent 95% confidence intervals. P2 PermaNet 2.0, OS Olyset net, 
UTN untreated net, HDT (Host decoy trap_bucket unit), ITNs insecticide-treated nets
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to 76.91%), bringing total mortality in resistant popu-
lations to > 80% across all net types. We establish the 
principle of an integrated approach that combines con-
ventional indoor vector control with a non-insecticidal 
lure and kill device, providing an important comple-
ment for future paradigms of vector control and resist-
ance management.

In this study, a large number of Kisumu strain mos-
quitoes were lured and killed by the HDT, even when 
untreated bednets were used; this suggests that many 
host-seeking mosquitoes are attracted to and land on 
the HDT, regardless of the presence of a real human host 
beneath a nearby bednet. Although the device in this 
study was tested indoors, this finding highlights the ear-
lier capture and subsequent mortality of Anopheles and 
other mosquito genera by the HDT when employed as an 
outdoor surveillance tool [25, 26, 31, 40]. The aforemen-
tioned studies indicate that the combination of human 
host-associated stimuli used in the HDT’s design are key 
factors in its effectiveness. The relative importance of 
different host stimuli has since been quantified [41, 42] 
and results from the present study suggest the visual and 
thermal stimuli arising from the HDT itself, in the pres-
ence of and in direct competition with a live host, are suf-
ficient to lure and possibly deflect host-seeking vectors, 
as also indicated by the modest reduction in blood-feed-
ing rates.

Interestingly, the mortality rate of resistant mosquitoes 
that was attributable to ITNs was also slightly increased 
when an HDT was present in the experimental hut. One 
explanation for this may be that host-seeking behav-
iour in general was enhanced by the additional stimuli 
arising from the HDT, resulting in more exposure to 
insecticides from more frequent contact with the ITNs. 
Although net contact times are generally lower on ITNs 
[43], recent research shows that permethrin causes some 
degree of increased persistence in host-seeking, meas-
ured as increased passage through holes in bednets in 
both resistant and susceptible mosquito populations [44]. 
Direct observation of mosquitoes and transcriptomic 
analysis could enhance understanding of their behav-
ioural interactions with bednets, hosts (protected or not) 
and additional trapping/control devices in an indoor 
environment.

In experimental hut trials (EHTs), the HDT used con-
sisted of only the visual and thermal elements of the trap 
itself, with odour and carbon dioxide emanating from the 
sleeping volunteer inside the bednet. Across all six treat-
ments where an HDT was present, approximately 65% 
of mosquitoes were caught by the trap, indicating that 
this ambient odour source was sufficient to trigger host-
seeking behaviour within the confines of a hut, while 
the cues from the trap prompted landing. The fact that 
the mosquito net itself provides a physical barrier likely 
enhanced the lure-and-kill properties of HDT. Placing a 
mosquito trap within a room used for sleeping may offer 
a more practicable option for limiting vector contact. 
This approach could be easier to implement compared to 
other suggestions that also exploit vector behaviour, for 
instance raising buildings to avoid low-flying mosquitoes 
[45], which may be challenging to implement in existing 
housing stock. In addition to malaria vectors, HDTs may 
also be useful against others nuisance mosquitoes such 
as Mansonia and Culex species and vectors of neglected 
tropical diseases [40]. Recently, it was highlighted that 
HDT may have a role to play in surveillance of Simulium 
vectors of Onchocerca volvulus in elimination settings 
[46]; given the extremely limited options for controlling 
adult blackflies, its use as a possible control tool may be 
worth exploring.

Further to the observed high killing effect against resist-
ant mosquitoes, HDT contributed to the inhibition of 
blood-feeding in this study. Although only small numbers 
of blood fed mosquitoes were recorded in the huts, all 
the treatments combining nets and HDT reduced blood 
feeding rates compared to nets alone, probably by reduc-
ing the overall number of mosquitoes in the hut rather 
than altering their propensity to blood-feed. Pyrethroids 
are known to reduce both blood-feeding events and total 
blood volume ingested [47]; this finding suggests that 

Table 3 Mosquito exit rates and comparatives odds ratio (OR) 
according to treatments

CI confidence intervals
* Significance of difference

Treatments Exophily rate (95% 
CI)

(Net + HDT) vs net

Odds ratio (95% CI) P value

Kisumu

 Untreated net 26.06 (21.98, 30.13) – –

 Untreated 
net + HDT

8.92 (6.33, 11.50) 0.27 (0.17, 0.45)  < 0.001*

 PermaNet 2.0 25.88 (21.84, 29.91) – –

 PermaNet 
2.0 + HDT

5 (2.69, 6.56) 0.14 (0.07, 0.26)  < 0.001*

 Olyset net 15.09 (11.75, 18.43) – –

 Olyset net + HDT 5.30 (3.27, 7.34) 0.32 (0.17, 0.59)  < 0.001*

Anopheles gambiae s.l

 Untreated net 16.44 (13.00, 19.88)

 Untreated 
net + HDT

13.29(10.17, 16.41) 0.78 (0.48, 1.25) 0.5178

 PermaNet 2.0 35.82 (31.46, 40.18)

 PermaNet 
2.0 + HDT

8 (5.29, 10.16) 0.15 (0.09, 0.24)  < 0.001*

 Olyset net 32.60 (28.25, 36.94)

 Olyset net + HDT 5.47 (3.42, 7.53) 0.12 (0.07, 0.21)  < 0.001*
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overall a reduction in the risk of malaria transmission 
could be achieved by intercepting mosquitoes domesti-
cally before they have a chance to blood-feed, crucially, 
for both insecticide-susceptible and -resistant popula-
tions. Interestingly, none of the recorded blood-fed mos-
quitoes were lured and killed by HDT in the presence 
of ITNs in this study. As a key parameter influencing 
malaria transmission [47], the potential to reduce blood 
feeding requires further investigations, especially regard-
ing at which point blood-feeding is prevented in a given 
household.

In this study, the high proportion of mosquitoes killed 
by HDT led to a significant reduction in the number of 
mosquitoes that could potentially escape the insecti-
cide-based tools, leave the insecticide environments and 
enter the natural population where they could maintain 
the transmission of Plasmodium spp. and generate new 
offspring. It was reported that such tools that induce 
more exiting could reduce the chances of leading to a 
mass killing of the vector [48]. Significantly lower exit-
ing rates were observed in both susceptible and resistant 
mosquitoes compared to the treated nets alone. Rather 
than perceiving this low exophily rate as a reduction in 
the repellency properties of treated bednets [6, 7, 49], it 
could be related to the high killing effect of HDT, thus 
removing mosquitoes before they can exit. This could 
be beneficial for malaria control. The observed low mos-
quito exophily could reduce the chances of them leaving 
the protected host environment, which would prevent 
them from continuing their life cycle. Moreover, the 
reduction in the number of mosquitoes likely to escape 
the insecticide environment could result in a decrease in 
the outdoor biting rate in the community, which would 
in turn lead to a reduction in residual malaria transmis-
sion. This was also highlighted in other published reports 
stating that high exiting rates could be in response to a 
wide-application indoor-based intervention, and this 
might contribute to residual malaria transmission [50, 
51]. Moreover, in this study, HDT displayed no differ-
ential attractiveness to either susceptible or field-col-
lected An. gambiae s.l. mosquitoes in the presence of 
an untreated net, suggesting that HDT would not show 
selective effectiveness according to insecticide resistance 
status in malaria vectors in environments where vector 
control interventions are absent, like outside households. 
This makes it a potential vector control tool to support 
sustenance of gains in control of residual malaria trans-
mission. It can also function as a sampling tool that is not 
biased by resistance status of the target population.

The aforementioned data indicate that much attention 
should be paid to approaches that target vector host-
seeking behaviour in combination with ITNs rather than 
solely on insecticide-based tools within houses. This 

research also opens perspectives on studying the epide-
miological impact of HDT in endemic areas. In terms of 
potential large-scale applications, this approach could 
be enhanced by design modifications to increase lure/
kill efficiency of HDT and make them easy to use with-
out compromising efficacy. Consequently, it would be 
necessary to investigate communities’ perception regard-
ing the system’s acceptability, practical use and perceived 
side effects. Combining bednets with HDT appears to 
be a promising mosquito control approach that could be 
integrated into current vector control strategies to tackle 
insecticide resistance.

Conclusions
Suitable complementary tools for managing resistant 
malaria vectors are needed to reach malaria elimination 
in endemic settings. This study showed evidence that 
using a recently developed trap, the HDT, could reduce 
the chance of mosquito bites by significantly reducing 
mosquito survival and therefore contact with humans 
within the home and upon exit. The combination of HDT 
and bednets in the same room showed the capacity to 
reduce An. gambiae s.l. blood meal success and exoph-
ily rates. Our study sheds light on a potential integrated 
approach to combat resistant malaria vectors, which will 
be of interest to national malaria control programmes 
and others malaria control stakeholders.
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