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Abstract 

Background Triatoma brasiliensis brasiliensis is the primary vector of Chagas disease in Brazil’s semi‑arid regions, 
exhibiting adaptability to various environments, including domestic and peridomestic. Despite its significance, com‑
prehensive genomic data for this subspecies remain limited.

Methods We assembled the complete mitochondrial genome of T. b. brasiliensis using a combination of Illumina 
and Sanger sequencing technologies, the latter being necessary to obtain the control region with eight primers 
designed in this study. The mitogenome was annotated to identify gene content and organization. Phylogenetic 
relationships were inferred using conserved blocks of 13 protein‑coding genes and 22 transfer RNA genes. For this 
analysis, 18 representative triatomines with near‑complete mitogenomes were selected, and phylogenetic recon‑
struction was performed using the maximum ikelihood method.

Results The complete mitogenome spans 16,575 base pairs and includes 13 protein‑coding genes, 22 transfer RNA 
genes, and two ribosomal RNA genes, consistent with the typical structure of insect mitochondrial genomes. The 
control region exhibited tandem and inverted repeats arranged in blocks, as observed for other Reduviidae. Given 
the limited availability of mitogenomes, our phylogenetic analysis provided statistical support for T. b. brasiliensis 
as a sister taxon to Triatoma infestans, forming a well‑supported clade that is sister to Triatoma vitticeps.

Conclusions The availability of this mitogenome provides insights into the systematics, biology, and genomics of tri‑
atomine species while also enhancing our understanding of their evolutionary relationships. However, the limited 
number of available mitogenomes, particularly for South American Triatoma species, underscores the need for further 
sequencing efforts to improve phylogenetic resolution and support comparative genomic studies.
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Background
Currently, 158 species of triatomines (Hemiptera: Redu-
viidae) are recognized, distributed across 18 genera and 
5 tribes. The most recently described species, Triatoma 
atrata and T. picta, were identified in 2023 [1]. In Bra-
zil, synanthropic species such as Triatoma brasiliensis, 
T. infestans, T. pseudomaculata, T. sordida, and Pan-
strongylus megistus are major public health concerns [2] 
due to their critical roles as vectors of Chagas disease. 
In the semi-arid regions of Brazil, T. brasiliensis brasil-
iensis is the primary vector of Chagas disease, exhibiting 
remarkable adaptability to domestic, peridomestic, and 
sylvatic environments [3, 4]. Its natural habitats, primar-
ily rocky outcrops [5], are inaccessible to conventional 
vector control methods, leading to frequent and rapid 
reinfestation of domiciles following insecticide applica-
tions. This poses a significant challenge to efforts aimed 
at mitigating Chagas disease transmission [3, 6, 7]. This 
species is the nominal taxon of a complex that includes 
seven species: Triatoma brasiliensis, T. bahiensis, T. 
juazeirensis, T. lenti, T. melanica, T. petrocchiae, and T. 
sherlocki [8]. Within this complex, Triatoma brasiliensis 
is further divided into two subspecies: T. b. brasiliensis 
and T. b. macromelasoma [9]. Members of this group dis-
play distinct morphological traits and varying degrees of 
epidemiological relevance [9, 10]. Among these, T. b. bra-
siliensis is the most adapted to peridomestic and domes-
tic environments. In these settings, it frequently exhibits 
high rates of natural Trypanosoma cruzi infection, fur-
ther amplifying its role as a critical vector in Chagas dis-
ease transmission [11, 12].

Advances in the systematics of Triatominae have 
primarily been driven by Sanger sequencing [13–15], 
although recent studies have increasingly employed 
phylogenomics to provide deeper evolutionary insights 
[16–18]. Despite substantial progress in sequencing 
technologies and analytical approaches, the number of 
fully sequenced and annotated mitochondrial genomes 
for Triatominae species remains limited, especially con-
sidering their diversity and epidemiological importance 
[18–23]. In this study, we present the assembled and 
annotated mitogenome of T. b. brasiliensis, contribut-
ing to the growing genomic resources for exploring 
genetic diversity and advancing systematics within the 
Triatominae.

Methods
A T. b. brasiliensis sample collected in Currais Novos, Rio 
Grande do Norte, Brazil (6°15′39″S, 36°30′54″W), was 
used for this analysis. Total nucleic acids were extracted 
from midgut tissue using the Qiagen extraction kit (Pro-
mega®) according to the manufacturer’s instructions. 
DNA quantification and integrity were assessed using the 

Qubit 3.0 High Sensitivity DNA Assay (ThermoFisher, 
USA). High-quality DNA was used to prepare libraries 
following the Illumina TruSeq Nano DNA Library Kit 
protocol (Seoul, Korea). Sequencing was performed in 
Macrogen on the Illumina NovaSeq 6000 platform, gen-
erating more than 18 million paired-end reads of approx-
imately 150 bp with a GC content of 34% after trimming, 
consistent with expectations for this dataset.

The mitochondrial genome was assembled using Mitoz 
v3.6 [24] and SPAdes v3.15.2 [25], with results cross-
checked for consistency. Most regions demonstrated 
coverage exceeding 1000×; however, coverage dropped 
significantly after position 15,000 bp. To recover the 
control region, which was not entirely obtained through 
Illumina sequencing, a set of eight primers (MT-F1: 
CCT ACA AAA CCG CAT GTT CA, MT-R1: TTT TGT 
TAT TGG GGC TTG GC, MT-F2: CAC TAA CCC TTC 
AAC GAC AA, MT-R2: CCC TTT TAA AAC GGG GAT 
CG, MT-F3: AGT TAG AAT TGA CGC TCA G, MT-R3: 
CCT ATT TAT CAG GCA CCT T, MT-F4: CAT ACC CGG 
ATA GGA TTA G, MT-R4: CTT GGG ATC TGA GAA CAA 
T) was designed using Primer v5.0 [26], and the result-
ing sequences were integrated into the final assembly. 
The first pair of primers was designed based on the ini-
tial sequence output from MitoZ v3.6, providing a foun-
dation for primer placement. Subsequent sequencing 
results guided the design of additional primers to cover 
the remaining gaps in the control region. Annotation 
was performed using MitoZ v3.6, and the assembly was 
validated through MUSCLE v3.8.1551 [27] for individual 
genes. The circularized final version was validated by 
manual inspection. To enhance alignment accuracy, the 
13 protein-coding genes (PCGs) and 22 transfer RNA 
(tRNA) genes were aligned independently with homolo-
gous genes from other triatomine species with annotated 
mitogenomes [18–23]. Open reading frames (ORFs) 
were identified using ORFfinder (NCBI, Bethesda, MD, 
USA; https:// www. ncbi. nlm. nih. gov/ orffi nder) and 
compared with other insect mitogenomes, including T. 
infestans [23]. Stop codon positions were also confirmed 
by aligning sequences with reference mitogenomes, 
where incomplete stop codons (T or TA) are completed 
through post-transcriptional polyadenylation [22, 28]. 
Ribosomal RNA (rRNA) annotations were extended to 
include adjacent tRNAs, and the 5′ ends of small rRNAs 
(srRNAs) were determined through comparative mitog-
enomic analysis. Tandem repeats (TRs) within the mito-
chondrial genome were detected using Tandem Repeats 
Finder [29]. To identify and compare tandem repeat 
sequences from the control region in T. b. brasiliensis and 
other triatomine species, major consensus repeat motifs 
(18–149 bp) were selected. A BLAST database was built 
using complete mitochondrial genomes from available 

https://www.ncbi.nlm.nih.gov/orffinder
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triatomine species. Triatoma b. brasiliensis repeat motifs 
were then queried against this database using BLASTN. 
To detect potentially homologous repeats in control 
regions from other species, a relaxed filtering approach 
was applied: identity ≥ 85%, alignment length ≥ 40 bp, 
E-value ≤ 1e−5, and bit score ≥ 50. Matches were manu-
ally verified to confirm their location within the control 
region of the mitochondrial genomes.

Conserved blocks of 13 PCGs and 22 tRNAs from a set 
of samples, representing each species complex with avail-
able mitogenomes, were selected for analysis. Gblocks 
v0.91b [30] was used to refine alignments and select con-
served regions (12,280 bp). Phylogenetic trees were con-
structed using the maximum likelihood (ML) method 
implemented in IQ-TREE v2.2.0 [31], choosing the best-
fit substitution via ModelFinder and tree search algo-
rithm [32, 33]. Branch support was assessed using 1000 
ultrafast bootstrap (BS; UFBoot2) replicates and SH-
aLRT tests with default settings. Oncocephalus breviscu-
tum (NC_022816) was set as the outgroup.

Results and discussion
The mitogenome (16,575 bp; accession code PV085522; 
Additional File 1) of T. b. brasiliensis was shorter than 
that of T. infestans (17,301 bp) but longer than that of 
Triatoma mexicana (15,699 bp) [20, 23]. It contains 
37 genes, including 13 protein-coding genes (PCGs), 
22 transfer RNA (tRNA) genes, and 2 ribosomal RNA 
(rRNA) genes. These genes are arranged in the typical 
insect mitochondrial gene order, oriented on the same 
strand, and show no major rearrangements compared 
to closely related species. The 13 PCGs range in length 
from 160 base pairs (ATP8) to 1714 base pairs (ND5). 
The 22 tRNA genes vary in size from 63 to 71 base pairs. 
The rRNA genes are located between positions 12,487 
and 14,619, separated by the valine tRNA, with the large 
ribosomal RNA (16S rRNA) measuring 1309 base pairs 
and the small ribosomal RNA (12S rRNA) measuring 772 
base pairs. Some protein-coding genes (ATP6 and COX3) 
exhibit incomplete stop codons (T or TA, with COX3 
annotated to have its TAA stop codon completed by the 
addition of 3′ A residues to the mRNA), which are com-
pleted post-transcriptionally by the addition of 3′ poly(A) 
tails, a common feature in mitochondrial genome expres-
sion [34]. Functional annotation revealed near-complete 
conservation of start and stop codons, consistent with 
mitochondrial genomes of related species. However, 
some differences were observed. For instance, ND2 in 
T. b. brasiliensis initiates with ATC, whereas T. infestans 
uses ATT, although both codons code for isoleucine and 
do not affect protein functionality. Similarly, ND5 and 
ND6 exhibit an ATA start codon in T. b. brasiliensis, 
while T. infestans has GTG and ATG, respectively, which 

may represent species-specific mutations. Additionally, 
ATP6 in T. b. brasiliensis terminates with TAG instead of 
TAA as in T. infestans, suggesting a potential stop codon 
variation. Moreover, COX3 in T. b. brasiliensis ends with 
an incomplete stop codon (TTA), similar to T. infestans 
(TA), both of which require post-transcriptional polyade-
nylation for translation termination. In contrast, ND4, 
ND4L, ND3, COX1, COX2, ATP8, and CYTB exhibit full 
conservation of start and stop codons between both spe-
cies. The tRNA genes in T. b. brasiliensis range in length 
from 62 to 70 bp, while the s-rRNA and l-rRNA genes 
measure 771 bp and 1308 bp, respectively, with an A + T 
content of 71.5%, closely resembling values observed in T. 
infestans (Table 1).

A circular map of the T. b. brasiliensis mitochondrial 
genome was constructed (Fig.  1), illustrating the spatial 
arrangement of all genes, including intergenic regions. 
The map highlights the genome’s structural organiza-
tion and shows the relative positions of protein-coding 
genes (PCGs), transfer RNAs (tRNAs), and ribosomal 
RNAs (rRNAs). The mitochondrial genome of Triatoma 
b. brasiliensis exhibited an A + T-biased codon usage in 
its protein-coding genes (PCGs), with ATA (isoleucine, 
2.95%), ATT (isoleucine, 2.82%), and AAA (lysine, 2.61%) 
being the most frequently used codons. A complete table 
detailing codon usage and RSCU (Relative Synonymous 
Codon Usage) values is provided in Supplementary Infor-
mation: Additional Table. These results align with codon 
preferences observed in other heteropteran species, sug-
gesting a conserved pattern in mitochondrial translation 
efficiency [34] and T. infestans [23].

The control region of T. b. brasiliensis spans approxi-
mately 1500 bp and contains multiple tandem repeats, a 
characteristic feature of mitochondrial variability in tri-
atomines [35, 36]. This region can be divided into four 
distinct components, as previously identified [35, 36]: A 
149-bp tandem repeat (positions 15,228–15,735) exhibits 
100% sequence identity, suggesting a potential structural 
role in mitochondrial organization. A 120-bp AT-rich 
repetitive segment (16,007–16,241) has 97% sequence 
similarity, which may facilitate the secondary structure 
formation required for mitochondrial replication and 
species-specific adaptations. A short, structured region 
within the control region contains an inverted repeat 
spanning 15,691–16,315, exhibiting 95% sequence iden-
tity between its two arms. This inverted repeat (23 bp) 
has the potential to form a stem-loop structure, a fea-
ture commonly associated with mitochondrial replica-
tion and gene regulation. Similar to the inverted repeats 
described in T. boliviana [36], this structure may serve 
as a recognition site for mitochondrial proteins, regu-
lating transcription or replication [35, 36]. A BLASTN 
search comparing tandem repeat sequences from T. b. 
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brasiliensis against mitochondrial genomes of other tri-
atomine species identified a repeat motif with 90% simi-
larity (E-value = 4.62e−15, bit score = 68.0) across nine 
regions in the T. infestans (KY640305) control region. No 
similar matches were found in other triatomine species. 
Each occurrence of this motif spans 53–57 base pairs, 
with four mismatches and one gap opening, indicating 
a reasonable degree of conservation. The presence of 

recurrent tandem repeats in both T. b. brasiliensis and T. 
infestans suggests a potential functional role in the mito-
chondrial genome, possibly contributing to replication, 
gene regulation, or structural organization. Furthermore, 
their distribution across multiple regions in T. infestans 
supports the hypothesis that these sequences may be 
under selective pressure, maintaining their functional rel-
evance within Triatominae mitochondrial evolution.

Table 1 Features of the annotated mitochondrial genome of Triatoma b. brasiliensis, detailing the genomic position, type of genetic 
element, and its functional role

Start End Length (bp) Direction Type Gene name Gene prodcut Start/stop codon

1 66 65  + tRNA trnI(gau) tRNA‑Ile –

63 131 70 − tRNA trnQ(uug) tRNA‑Gln –

131 198 69  + tRNA trnM(cau) tRNA‑Met –

199 1197 1000  + CDS ND2 NADH dehydrogenase subunit 2 ATC/TAG 

1203 1268 67  + tRNA trnW(uca) tRNA‑Trp –

1261 1323 64 − tRNA trnC(gca) tRNA‑Cys –

1324 1388 66 − tRNA trnY(gua) tRNA‑Tyr –

1390 2928 1540  + CDS COX1 cytochrome c oxidase subunit I ATG/TAA 

2924 2990 68  + tRNA trnL(uaa) tRNA‑Leu –

2991 3689 700  + CDS COX2 cytochrome c oxidase subunit II ATT/TAA 

3670 3738 70  + tRNA trnK(cuu) tRNA‑Lys –

3739 3802 65  + tRNA trnD(guc) tRNA‑Asp –

3803 3961 160  + CDS ATP8 ATP synthase F0 subunit 8 ATG/TAA 

3955 4660 707  + CDS ATP6 ATP synthase F0 subunit 6 ATG/TAG 

4625 5409 786  + CDS COX3 cytochrome c oxidase subunit III ATG/TTA(a)

5409 5471 64  + tRNA trnG(ucc) tRNA‑Gly –

5469 5825 358  + CDS ND3 NADH dehydrogenase subunit 3 ATA/TAG 

5825 5889 66  + tRNA trnA(ugc) tRNA‑Ala –

5895 5958 65  + tRNA trnR(ucg) tRNA‑Arg –

5960 6024 66  + tRNA trnN(guu) tRNA‑Asn –

6024 6092 70  + tRNA trnS(gcu) tRNA‑Ser –

6093 6155 64  + tRNA trnE(uuc) tRNA‑Glu –

6158 6225 69 − tRNA trnF(gaa) tRNA‑Phe –

6225 7937 1714 − CDS ND5 NADH dehydrogenase subunit 5 ATA/TAA 

7938 7999 63 − tRNA trnH(gug) tRNA‑His –

8001 9332 1333 − CDS ND4 NADH dehydrogenase subunit 4 ATG/TAG 

9326 9619 295 − CDS ND4L NADH dehydrogenase subunit 4L ATG/TAA 

9622 9684 64  + tRNA trnT(ugu) tRNA‑Thr –

9685 9753 70 − tRNA trnP(ugg) tRNA‑Pro –

9754 10,257 505  + CDS ND6 NADH dehydrogenase subunit 6 ATA/TAA 

10,257 11,390 1135  + CDS CYTB cytochrome b ATG/TAG 

11,389 11,456 69  + tRNA trnS(uga) tRNA‑Ser –

11,540 12,475 937 − CDS ND1 NADH dehydrogenase subunit 1 ATA/TAA 

12,458 12,522 66 − tRNA trnL(uag) tRNA‑Leu –

12,487 13,794 1309 − rRNA l‑rRNA 16S ribosomal RNA –

13,776 13,845 71 − tRNA trnV(uac) tRNA‑Val –

13,848 14,618 772 − rRNA s‑rRNA 12S ribosomal RNA –

14,619 16,575 1055 − – – Control region –
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The phylogenetic reconstruction, based on representa-
tive species from each species complex with available 
mitogenomes, did not reveal any significant deviations 
from the established phylogenies [20, 37, 38]. Triatoma 
b. brasiliensis was strongly supported (BS = 100) as a sis-
ter species to T. infestans, forming a clade that is sister 
to T. vitticeps (BS = 100). However, the analyzed species 
represent only a small fraction of the true diversity within 
the Triatominae. Although Brazil harbors the highest 
diversity of Triatominae species globally, T. b. brasiliensis 
is only the second endemic species from the country to 
have its mitogenome annotated (Fig. 2).

Conclusion
Molecular tools have played a pivotal role in advanc-
ing our understanding of the biology and epidemio-
logical impact of T. b. brasiliensis. Studies in population 
genetics [38], molecular ecoepidemiology [11, 39, 40], 
transcriptomics [41, 42], and other fields have signifi-
cantly expanded our knowledge of this vector species. 
These studies have been instrumental in elucidating 
the adaptive mechanisms, genetic diversity, and epide-
miological relevance of T. b. brasiliensis. The complete 
mitochondrial genome of T. b. brasiliensis presented 
here is an addition to the growing genomic resources for 

Fig. 1 Circular representation of the annotated mitochondrial genome of Triatoma brasiliensis brasiliensis. The genome is 16,575 bp long, 
comprising 37 genes: 13 protein‑coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. The outer ring illustrates 
the gene arrangement and orientation: genes transcribed on the forward strand are positioned outside the circle, while those transcribed 
on the reverse strand are positioned outside. Protein‑coding genes, tRNAs (represented by their corresponding single‑letter amino acid codes), 
and rRNAs are annotated, with the control region denoted near the origin of replication
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Triatominae. Future efforts to sequence and annotate the 
mitogenomes of other members of the T. brasiliensis spe-
cies complex will be essential for enhancing our under-
standing of the genetic diversity, ecological adaptations, 
and phylogenetic relationships within this group of vec-
tors, ultimately contributing to improved management of 
Chagas disease.
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