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Abstract 

Background  The expanding geographical spread of mosquito-borne diseases (MBDs) has intensified the need 
for effective mosquito surveillance. Additional surveillance, particularly of species such as Culex pipiens, is essential 
as this species is a key vector of West Nile and Usutu viruses. Citizen science offers an innovative approach to monitor‑
ing Cx. pipiens populations.

Methods  Our study utilized data from the Mosquito Alert mobile app to model the spatial distribution and abun‑
dance of Cx. pipiens and mosquito bites during the summer of 2021 in the Netherlands. Using generalized linear 
mixed models, climatic and non-climatic factors were analyzed to create two distribution models of adult Cx. pipiens 
and mosquito bites as outcomes.

Results  Population density, income, and agricultural areas (P ≤ 0.007) were identified as key determinants 
for both models. Blackbird population density, precipitation, and the interaction between artificial surfaces 
and temperature were also covariates for the Culex model, whereas sand and tree coverage were determinants 
for the bite model. The study controlled for biases in sampling effort to ensure robust predictions, revealing 
higher Cx. pipiens abundance in the central eastern areas of the country and widespread mosquito biting activity 
across the Netherlands.

Conclusions  These findings underscore the importance of sociodemographic and environmental factors in mos‑
quito distribution and biting dynamics, with citizen science emerging as a valuable tool for enhancing traditional 
surveillance. Future research integrating longer temporal datasets and human behavioral factors will further improve 
predictive accuracy and support more effective MBD prevention efforts.
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Background
The geographical spread of mosquitoes capable of 
transmitting disease pathogens is a growing global 
concern, leading to millions of human and animal deaths 
worldwide. This rise of mosquito-borne diseases (MBDs) 
underscores the growing importance of enhanced 
mosquito surveillance [1]. For instance, certain species, 
such as Culex pipiens, are known to be competent vectors 
of many MBDs, including West Nile virus (WNV) and 
Usutu virus (USUV) [2–4]. In recent years, European 
countries with low MBD prevalence (proportion of 
people in a population who have a disease at a given 
time), such as the Netherlands, have begun to experience 
autochthonous transmission of WNV and USUV, raising 
public health concerns [5–9]. In order to prevent further 
outbreaks or epidemics, innovative and enhanced routine 
vector surveillance of disease-competent vectors like 
Cx. pipiens is essential for implementing preventive 
intervention [10].

In the Netherlands, Culex mosquitoes are commonly 
found in urban and rural environments [11]. Their 
immature stages develop in stagnant water bodies 
such as ditches, ponds, and artificial containers. The 
abundance of these mosquitoes tends to peak during the 
warm summer months, influenced by both climatic and 
non-climatic factors such as temperature, precipitation, 
land use, and human population density [12–20]. Culex 
pipiens in particular has become quite abundant in more 
urban areas due to their ability to develop in a variety of 
locations [21, 22]. This, in combination with Cx. pipiens 
being a primary vector of WNV and USUV, poses public 
health issues with the increasing rates of urbanization, 
making the need for surveillance of this mosquito species 
urgent [23–25].

Targeted active surveillance of mosquitoes, such as 
using traps to collect adult individuals, is a common 
strategy to identify mosquito distribution and abundance. 
However, this strategy is expensive, time-consuming, 
and resource-dependent. Due to these restraints, the 
geographical scale of the surveillance system can be 
limited [26, 27]. Citizen science initiatives can effectively 
address limitations of traditional mosquito surveillance 
methods. This innovative approach facilitates more cost-
effective mosquito surveillance while covering larger 
areas than more traditional professional systems [28, 
29]. Moreover, citizen science not only can engage the 
public directly but can also enhance public health literacy 
[30–33]. Multiple citizen science mosquito surveillance 
projects across the world have already proved useful 
and reliable for monitoring mosquito distributions and 
nuisance [34–37].

Although citizen science does offer many benefits for 
expanding upon current surveillance, there are some 

limitations, such as sampling bias. For instance, Mosquito 
Alert (MA) is a mobile citizen science application that 
makes it possible for people to transmit reports about 
mosquito-related information [38]. Despite people 
having MA on their phones, however, their chances of 
submitting reports to MA will depend on situational 
factors such as what they are doing at the moment of 
observing a mosquito and where they are. Thus, the 
number of MA reports does not directly show how 
many mosquitoes are actually present in a given location. 
Nevertheless, this sampling bias can be mitigated by 
accounting for sampling effort, making it possible 
to improve estimates of actual mosquito population 
distributions in space and time [29].

Initially, MA focused on reporting adult invasive 
Aedes mosquitoes and their breeding sites, but in 
2020, the mobile application was expanded to include 
mosquito bite reports and reports of other mosquito 
species, including those of the Culex genus. With reports 
submitted all across Europe, MA provides validated 
adult mosquito data at both the national and continental 
level, a first of its kind in mosquito citizen science. Each 
report is validated to determine mosquito species by 
three independent expert entomologists through manual 
inspection of digital images that participants transmit 
through the app. Each expert labels the report based on 
their confidence in identifying the target species in the 
photographs. If they are uncertain, they use a “not sure” 
label. Reports may be flagged if they require further 
review by a senior entomologist. The final taxonomic 
classification is determined by averaging the assessments 
of the three validators. Images from the Netherlands 
submitted to MA and validated as Cx. pipiens are likely to 
be grouped together with the two biotypes (pipiens and 
molestus) and the sibling species Culex torrentium [39–
41]. Citizen scientists can also submit bite reports to MA; 
however, these reports cannot be validated yet as they 
do not include images [38, 42]. With these mosquito and 
bite reports, MA is able to collect valuable information 
about mosquito ecology, distribution, and nuisance at 
various spatial and temporal levels, with minimal costs 
and resources compared to traditional surveillance 
methods [38]. These reports have been indispensable 
in constructing predictive maps and even forecasting 
models for Barcelona [43]. Building such models is vital 
in understanding mosquito population distributions 
and mosquito biting dynamics to prevent and control 
potential MBD spread.

In 2020, the Netherlands experienced its first local 
transmission of WNV detected in mosquitoes, humans, 
and a bird [8, 9]. The emergence of these cases of MBDs 
in northern Europe raises concerns about the potential 
for wider disease spread. Culex pipiens is highly abundant 
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in the Netherlands, and the country’s landscape provides 
suitable habitats for these mosquitoes to flourish [11, 44, 
45]. The factors leading to these positive cases are still 
in question, but their occurrence shows the importance 
of regular mosquito monitoring and understanding 
of mosquito biting dynamics to prevent outbreaks. In 
2021, MA was officially launched in the Netherlands, 
and thousands of reports were sent by citizen scientists 
in the country [46]. Using these reports, our study aims 
to create predictive, spatial models on the distribution 
and abundance of adult Cx. pipiens mosquitoes and 
mosquito bites in the Netherlands during the summer of 
2021. Additionally, this study identifies climatic and non-
climatic factors influencing mosquito activity.

Methods
Study area
The study area is the complete area of the Netherlands: lati-
tude 50.75 N–53.55 N, longitude 3.35 W–7.22 E. The Neth-
erlands is characterized by a mostly flat topography with 
diverse land cover that includes urban areas, agricultural 
lands, forests, wetlands, and extensive water systems. These 
landscapes play a significant role in mosquito distribution 
and abundance [47]. The country’s intricate water network, 
including canals, rivers, and dikes, along with its temperate 
maritime climate characterized by moderate temperatures 
and high humidity, creates favorable conditions for mos-
quitoes [44, 47, 48]. During the study period (July 22, 2021, 
to August 22, 2021), the average temperature ranged from 
12 °C to 15 °C, and the average daily rainfall was 3.025 cm.

Data collection
Citizen science data
Data were collected from the MA citizen science project, 
focusing on adult Cx. pipiens reports and bite reports in 
the Netherlands. We rely only on the Culex reports that 
were classified by a team of expert entomologists as Cx. 
pipiens [38]. In this manuscript, we use the term “Cx. 
pipiens,” but it is possible that the reports are Cx. pipiens/
torrentium complex and other Culex biotypes [39–41]. 
The mosquito bite reports are not classified by species, 
although some are linked to adult mosquito reports that 
are classified [38, 42]. On July 22, 2021, the MA applica-
tion was officially launched to the Dutch public through 
Nederlandse Omroep Stichting (NOS), a national news 
channel [46]. This press release led to a large surge of MA 
reports from the Netherlands, resulting in a record num-
ber of submissions (14,405 Cx. pipiens reports and 6941 
bite reports) within a 4-week time period from July 22, 
2021, to August 22, 2021 (Figs. 1 and 2). All MA reports 
were filtered to include only those from the surge period 
in the Netherlands. Reports were aggregated by summing 
counts within 1 km2 cells. 

Sampling effort data
The sampling effort in each cell was determined follow-
ing Palmer et  al. [29] (Fig.  3). These authors calculated 
the probability of each active participant in a specific 
sampling cell submitting a report in the previous 2-week 
period based on the time elapsed since the participant 
downloaded the MA application [42]. This estimate is 
available at https://​github.​com/​Mosqu​ito-​Alert/​sampl​
ing_​effort_​data. For our analysis, we only considered the 
sampling effort during our study period. Then, we calcu-
lated a monthly estimate considering our own sampling 
cell by summing the individual probabilities for each 
cell during the study period. By accounting for sampling 
effort, we can fairly compare MA reports across areas 
with varying levels of data collection. Without this con-
sideration, regions with more intense sampling might 
appear to have higher MA reports simply due to more 
data being collected, rather than a true difference in Cx. 
pipiens or bite occurrences.

Non‑climate and climate covariates
Based on the literature, we identified 18 potential spatial 
covariates, two climatic and the rest non-climatic, that 
could be related to mosquito distribution and activity 
(Table  1) [13–15, 18, 20, 49–51]. All covariates covered 
the extent of the Netherlands, at 1  km resolution, and 
their values were standardized to ensure they were on a 
comparable range in the models.

Species distribution modeling based on non‑biased citizen 
reporting activity
To understand the spatial patterns of Cx. pipiens 
and bites, we fitted generalized linear mixed mod-
els (GLMMs). The response variables were (1) the 

Fig. 1  Time series of daily Mosquito Alert Culex pipiens (blue line) 
and bite (red line) reports in the Netherlands from July 22, 2021, 
to August 22, 2021

https://github.com/Mosquito-Alert/sampling_effort_data
https://github.com/Mosquito-Alert/sampling_effort_data
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number of adult Cx. pipiens reports and (2) the number 
of bite reports per cell. We first examined outliers in the 
response variables and removed values that fell beyond 
the 90th and 85th percentiles of the distributions for Cx. 
pipiens and biting reports, respectively (see Additional 
file  1: Fig. S1). Secondly, distributions of both variables 
(Cx. pipiens report counts and biting report counts) were 
visually assessed using boxplots and histograms. We 
selected the best-fit model among three different distri-
butions (negative binomial, Poisson, and geometric). For 
both cases, we selected the negative binomial distribu-
tion with a log link function to describe the relationship 
between the response and the predictor variables (see 

Additional file  1: Fig. S2). The negative binomial distri-
bution is commonly used in species distribution models 
based on count data, particularly when there is over-
dispersion [71]. The sampling effort was incorporated 
into the models as an offset. Since the models correct 
for sampling bias, the reports are used as fair estimates 
of mosquito abundance (Cx. pipiens image reports) and 
activity (biting reports). To address region-specific vari-
ation, random effects were added to the model using the 
second-level administrative divisions (municipalities) in 
the Netherlands. In addition, we tested for interactions 
among environmental covariates to capture complex 
relationships.

Final models for Cx. pipiens abundance and the 
bite abundance model were obtained using a stepwise 
backward procedure based on the Akaike information 
criterion (AIC) and Bayesian information criterion (BIC), 
with a threshold of 2 [72]. Additionally, we checked 
for multicollinearity (i.e., excessive correlation among 
covariates) using the variance inflation factor (VIF), 
removing covariates with VIF values over 3 to avoid 
collinearity [71]. The goodness of fit was also assessed by 
means of calculating the pseudo-R squared (pseudo-R2). 
Then, model cross-validation was performed through a 
cross-validation set approach. We randomly divided the 
dataset into training (80%) and testing (20%) sets. The 
model was trained again on the training dataset, and the 
resulting model was then used to calculate predictions 
for the testing dataset. We also calculated a range of 
evaluation statistics to assess the predictive performance 
using Pearson’s correlation coefficient (r) and Spearman’s 
rank correlation (S).

Finally, prediction maps were generated by applying the 
final models to the entire study area considering only the 

Fig. 2  Daily totals of Mosquito Alert reporting across the Netherlands from July 22, 2021, to August 22, 2021, for A validated adult Culex pipiens 
reports and B bite reports

Fig. 3  Mean sampling effort of Mosquito Alert citizen scientists 
by cell in the study period. SE, sampling effort
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study period. The maps display the predicted abundance 
of Cx. pipiens and bite activity across the study region.

All analyses were conducted in R version 4.4.1 [73]. 
Packages used for analysis included MASS, glmmTMB, 
performance, and DHARMa.

Results
Determinants of Cx. pipiens and bite activity
Cx. pipiens model
Variables selected for the final Cx. pipiens count pre-
diction are shown in Table  2. Agricultural areas, 
human population density (Population), Precipitation, 
and the interaction between temperature and surfaces 
with artificial coverings (Artificial) had a positive rela-
tionship with Cx. pipiens abundance. However, Income 
and the population density of blackbirds (Blackbirds) 
were negatively related to Cx. pipiens abundance. All 
variables were statistically significant. The pseudo-R2 
was 0.487. All VIF values were below 2, indicating low 
multicollinearity among these variables.

The evaluation statistics from the cross-validation 
set approach showed a robust correlation between the 
observed and predicted values. Specifically, Pearson’s 
correlation was reported at r = 0.71, while Spearman’s 

rank reached S = 0.7. This strong correlation underlines 
the robustness of the predictive model, confirming its 
effectiveness in capturing the underlying patterns in the 
data (see Additional file 1: Fig. S4).

QQ and residual plots to validate the models are 
included in the supplemental material (Additional 
file 1: Fig. S3).

Bite model
Table  3 shows the variables included in the final bite 
count predictions, which were all statistically significant. 

Table 1  All variables included in analyses with their respective definitions and original resolution

Covariates Definition Resolution References

Agricultural areas Percentage of area used for horticulture under glass, grassland, gardening, arable land, or orchard 100 m [52]

Clay Percentage of clay in soil 500 m [53]

Elevation Meters above sea level (negative if below sea level) 25 m [54]

Income Average income per resident per municipality Per municipality [55]

msPAF Multi-substance potentially affected fraction of aquatic species 1 km [56]

Nitrogen Percentage of nitrogen in soil 500 m [53, 57, 58]

Artificial Percentage of surface area with an artificial covering (e.g., concrete, asphalt) 100 m [59]

Grass Percentage of surface area which is grass 100 m [60]

Permanent wet Percentage of area which is wet (not water) 75% of the time, e.g., reeds, peat land, inland wetlands, 
and coastal wetlands (incl. salt marshes)

100 m [61]

Population Human population density 1 km [62]

Salinity Depth of freshwater/saltwater boundary 250 m [63]

Sand Percentage of sand in soil 500 m [53, 64, 65]

Temporary water Percentage of area which is water 25–85% of the time, e.g., temporary water surfaces associated 
with permanent water bodies, temporary natural (e.g. steppe) lakes and temporary artificial lakes 
(e.g., cassettes of fish ponds), intermittent rivers, flood areas, water-logged areas, wet agricultural 
fields, including rice fields, intertidal areas

100 m [66]

Temporary wet Percentage of area which is wet (not water) 25–75% of the time, e.g., areas of changing soil moisture, 
inland saline marshes, intermittent wetlands

100 m [66]

Tree coverage Density of tree coverage 100 m [67]

Blackbirds Density of Turdus merula (blackbird) population 1 km [68]

Precipitation Mean precipitation during study time period 1 km [69]

Temperature Mean temperature during study time period 1 km [70]

Table 2  Generalized linear mixed model results for Mosquito 
Alert Culex pipiens reports

SE standard error, VIF variance inflation factor

Coefficients Estimate SE P-value VIF

(Intercept) 1.482 0.033 < 0.001 –

Agricultural areas 0.193 0.018 < 0.001 1.324

Income −0.104 0.026 < 0.001 1.006

Population 0.144 0.017 < 0.001 1.421

Blackbirds −0.033 0.014 0.020 1.130

Precipitation 0.070 0.021 0.001 1.043

Artificial × Temperature 0.085 0.014 < 0.001 1.023
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Agricultural areas, human population density (Popula-
tion), and Tree Coverage had a positive relationship with 
bite count. Income and Sand were negatively related to 
bite numbers. The goodness of fit for the model (pseudo-
R2) was 0.465. The VIF values suggest that there is no 
multicollinearity concern, since all values are less than 2, 
indicating low correlation between the variables.

In this case, the predictions also closely mirrored the 
observations, as illustrated in the evaluation statistics 
from the cross-validation set approach (P = 0.77 and 
S = 0.76; see Additional file 1: Fig. S8).

QQ and residual plots to validate the bite models are 
included in the supplemental material (Additional file 1: 
Fig. S7).

Spatial distribution of Cx. pipiens and bite activity
Spatial predictions of the two models show some differ-
ences (Fig.  4). The predicted Cx. pipiens map (Fig.  4A) 
indicates most areas in the Netherlands with a moder-
ate predicted relative abundance of Cx. pipiens mosquito 
reports (yellow), suggesting that Cx. pipiens mosquitoes 
are abundant throughout the country. However, there 
is some variation in the relative abundance. The highest 
predicted abundance appears concentrated in the north-
eastern and central eastern regions of the Netherlands 
(orange and red). There also seems to be some high areas 
of Cx. pipiens abundance in the middle of the country, 
in areas with more green areas. Areas along the western 
coastline, the northern islands, and national parks show 
very low abundance of Cx. pipiens.

To contrast, bites seem to be highly abundant and show 
a wide spread throughout the Netherlands (Fig. 4B). Both 
dense, urban areas and national parks seem to have low 
bite occurrence, whereas residential and rural areas have 
more bites. Areas with water have low—near zero—
probability for occurrence of mosquito bites.

Relationship between predicted abundance of Cx. pipiens 
and biting activity
Figure  5 shows the relationship between the predicted 
abundance of Cx. pipiens (x-axis) and the predicted 
abundance of bites (y-axis). The scatter plot reveals a 
non-linear trend where predicted bites increase rapidly 
at lower mosquito abundance but plateau at higher Cx. 
pipiens abundance. A fitted curve highlights this satura-
tion effect, suggesting that beyond a certain mosquito 
abundance, additional mosquitoes do not proportionally 
increase the number of bites reported.

Discussion
After accounting for biases caused by opportunistic 
reporting (i.e., convenience sampling), the models 
predicting the number of reports submitted by citizen 
scientists demonstrated reasonable predictive power. 
However, there is still room for improvement. We suggest 
that these types of models could help infer relative 
mosquito abundance and biting intensity. Through citizen 
science reports, the MA initiative in the Netherlands can 
provide valuable insights into the spatial distribution 
patterns of mosquitoes and their nuisance activity. 
Although this study focuses on a specific window of 
mosquito seasonality in the Netherlands and is thus a bit 
limited and imperfect, it provides further understanding 
of real-time human–mosquito interactions and mosquito 
biting activity across the whole country.

While there were some differences in key covariates 
between the Culex model and the bite models, Popu-
lation and Income were significant sociodemographic 
covariates for both models. By including the sampling 
effort as an offset, the models control, to some extent, 
that the observed association between Population and the 
response variables is not merely due to higher data collec-
tion in populous areas but reflects a genuine increase in 
the abundance of Cx. pipiens mosquitoes and mosquito 
biting activity. Hence, the positive and significant rela-
tionship of Population suggests that human density plays 
a role in the interaction and attraction between mosqui-
toes and humans [74–77]. More populated areas often 
provide new breeding site opportunities for certain Culex 
mosquitoes (e.g., the biotype molestus), as well as more 
human hosts for certain Culex mosquitoes to bite in gen-
eral [21, 45, 76, 78]. Interestingly, Income was negatively 
related to both Culex and bite abundance. Not surpris-
ingly, socioeconomic factors do play a role in mosquito 
abundance and activity. A study in the United States 
found that Cx. pipiens pupae were more likely to be found 
in neighborhoods with lower median incomes in Balti-
more, Maryland, and Washington, DC [79]. This suggests 
that lower-income residents may have more exposure to 

Table 3  Generalized linear mixed model results for Mosquito 
Alert bite abundance

SE standard error, VIF variance inflation factor

Coefficients Estimate SE P-value VIF

(Intercept) 1.828 0.025 < 0.001 –

Agricultural areas 0.081 0.014 < 0.001 1.394

Income −0.053 0.020 0.007 1.005

Population 0.081 0.013 < 0.001 1.493

Sand −0.062 0.018 < 0.001 1.179

Tree coverage 0.061 0.013 < 0.001 1.242
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disease vectors. However, a previous comparative study 
showed the opposite in other Culex species, contrasting 
with our results [80]. Overall, these findings highlight 
the interplay between sociodemographic factors and Cx. 
pipiens and biting patterns, underscoring the need for tar-
geted public health interventions, especially in vulnerable 
communities.

For both the Cx. pipiens and bite count models, Agri-
cultural areas was a significant land coverage predictor. 
Culex pipiens tend to breed in standing water, which is 
common in agricultural settings. Agricultural landscapes 
provide various types of standing water habitats, such as 

irrigation ditches, drainage channels, livestock troughs, 
and nutrient-rich water bodies, which are ideal breeding 
sites for Cx. pipiens larvae [81, 82]. Although Cx. pipiens 
is typically more abundant in urban and peri-urban areas, 
this mosquito is able to adapt to different habitats, mak-
ing it highly abundant across the Netherlands [11, 21, 22]. 
It could also be that the expert validations erroneously 
classified Cx. torrentium images as Cx. pipiens, given that 
the two species are difficult to distinguish without dis-
secting physical specimens. Culex torrentium might be 
a species to consider relevant in agricultural areas [83]. 
Further complicating species identification, the females 
of the sensu stricto biotypes and torrentium cannot be 
distinguished by classic morphology, although the taxa 
may differ ecologically [84]. A recent study analyzed the 
feeding habits of these subtypes in the Netherlands, find-
ing differences influenced by host availability. In urban 
environments, they observed more frequent human 
blood-feeding in residential areas compared to park 
areas [85]. Another comprehensive study reported mixed 
blood meals across the group, combining avian, human, 
and non-human mammalian sources [86]. This finding 
is particularly noteworthy as it highlights the potential 
transmission risk between different host species. These 
results emphasize the importance of considering diverse 
habitat types when assessing mosquito breeding patterns 
and developing effective vector control strategies.

Interestingly, only two of the climatic variables con-
sidered (Precipitation and Temperature) were selected 
for the Cx. pipiens model. This may be due to the limited 

Fig. 4  Spatial prediction maps based on Mosquito Alert citizen science data controlling for sampling bias: A Cx. pipiens abundance and B bite 
abundance across the Netherlands

Fig. 5  Scatter plot of the predicted abundance of Cx. pipiens 
and bites
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data collection timeframe, which captured only a “snap-
shot” of mosquito distribution during suitable conditions. 
Precipitation varied substantially across the country even 
within this snapshot, so it is not surprising that it was an 
important variable in the models. After rainfall, various 
surfaces may fill with water and enable new breeding site 
proliferation, providing suitable habitats for different life 
stages of the mosquito [15]. Additionally, in more urban 
areas, rainwater can stay on impermeable surfaces, offer-
ing other potential habitats for mosquitoes to breed [87]. 
While Temperature showed less spatial variation, its 
interaction with artificial surfaces (Artificial) was a posi-
tive predictor for Cx. pipiens abundance. Artificial sur-
faces tend to be in urban environments; therefore, this 
interaction with warm weather suggests that urban heat 
islands (UHIs) could exacerbate mosquito populations, a 
phenomenon observed in other studies [88–91]. This is 
a cause for concern, as the increase in UHIs, as well as 
higher temperatures across the country, can cause the 
spread of disease vectors and accelerate virus replication 
times, enabling disease transmission in places that were 
previously considered unsuitable. Again, these revela-
tions underscore the importance of proactive vector con-
trol management, especially in growing urban areas.

In the Cx. pipiens model, Blackbird population density 
emerged as a significant negative predictor for mosquito 
count. While a previous study found blackbirds to be 
abundant in the eastern part of the Netherlands, they 
had an even higher abundance in urban areas [68]. Our 
findings suggest that Cx. pipiens are less prevalent in 
urban environments, which could potentially account 
for the observed negative relationship. However, further 
research is needed to explore this dynamic, particularly 
given the role of blackbirds as known transmitters of 
WNV [2, 23, 68].

The predictive spatial maps for Cx. pipiens and bite 
abundance had some similarities and differences. The 
Cx. pipiens spatial map indicates fairly widespread, 
heterogeneous distributions of Cx. pipiens across 
the Netherlands. Areas with the highest Cx. pipiens 
estimates are in the center of the country near the eastern 
border, near Germany. This area is in the municipality 
of Twente (Overijssel province), which is mostly rural 
[92]. With a homogeneous spread of biting activity, 
there is a high probability that people will be bitten 
at least once, especially given the high counts of Cx. 
pipiens mosquitoes throughout the country. Further 
studies are necessary to reveal these differences in Cx. 
pipiens abundance. Understanding these spatial patterns 
is crucial for public health planning, as it helps identify 
high-risk areas for potential MBD transmission. While 
the Netherlands is not considered as having a prevalence 
for MBDs, recent cases of WNV and Usutu are cause 

for concern [6, 8, 9]. Over time, these maps could be 
quickly generated in crisis scenarios (e.g., after a major 
flooding event) and guide vector control interventions, 
such as ultralow-volume sprays [27, 36, 49]. If citizen 
scientists submit reports in a more routine manner 
during mosquito season, these maps can also aid in 
vector surveillance efforts (e.g., where to allocate traps) 
[28, 29, 34, 35]. By pinpointing regions with elevated 
mosquito and biting activity, targeted vector control and 
community education efforts can be implemented to 
reduce disease risk and protect public health.

Other studies have made similar Cx. pipiens abundance 
maps for the Netherlands based on data from traditional 
trapping methods [93, 94]. They also found low 
abundance in national parks and higher abundance in 
rural areas and also found lower abundance in urban 
areas [93]. In the future, the integration of traditional 
surveillance alongside citizen science campaigns can 
provide an additional way to validate these results and to 
improve vector activity and abundance predictions at the 
country level. As for now, it is highly encouraging that 
citizen science methods can reproduce similar spatial 
patterns to these more traditional studies. It suggests 
that citizen science could be a valuable tool moving 
forward, enabling researchers and competent authorities 
to combine traditional surveillance data with novel data 
streams coming from participatory science, to improve 
knowledge and predictions, and produce more cost-
effective interventions [35].

Interestingly, the relationship exemplified between 
predicted Cx. pipiens abundance and bite abundance 
likely reflects biological constraints on mosquito biting 
behavior, particularly due to blood digestion times and 
the limits imposed by the gonotrophic cycle [21]. Once 
a mosquito takes a blood meal, it must digest it before 
seeking another host, temporarily removing it from the 
active biting population [21, 83]. At higher mosquito 
density, a significant proportion of the population is likely 
in this post-feeding, non-biting phase, causing a natural 
ceiling in observed bite reports [18, 19]. Additionally, 
host avoidance behavior and mosquito dispersal could 
further contribute to the observed saturation, suggesting 
that simply an increasing mosquito presence does 
not lead to a linear increase in biting pressure [16, 17]. 
These findings have implications for vector surveillance 
and control, indicating that bite-based monitoring 
may underestimate true mosquito abundance at high 
population levels.

This study does have some limitations. Since the major-
ity of MA reports from the Netherlands are from a very 
specific period, we created spatial models, with no tem-
poral component. Ideally, we would have MA data that 
spanned the entirety of the mosquito season and over 
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the course of multiple years, leading to more robust 
prediction models. Other climate variables such as rela-
tive humidity and wind speed have an effect on Culex 
populations and biting behavior throughout the season 
[3, 45, 49, 95, 96], so it could also be useful to include 
these. Considering that this is citizen scientist-submitted 
data, there is a human behavioral component that is not 
accounted for in our models, which might affect esti-
mates. For example, people may use preventive measures 
to avoid being bitten by mosquitoes. In the Netherlands, 
over 90% of participants in a recent survey reported using 
at least using one prevention measure, with preference 
for skin repellents and plug-in repellents [97]. Although 
the communication campaign in the Netherlands was 
focused on WNV vectors like Cx. pipiens, and all of the 
submitted adult mosquito images were of this species, the 
bite reports could not be validated at the species level. As 
a result, the reports might include bites from other mos-
quito species or insects, not necessarily from Cx. pipi-
ens mosquitoes. Additionally, there are multiple species 
complexes of Cx. pipiens mosquitoes, such as Cx. pipiens 
and Cx. pipiens molestus, which can only be identified 
through molecular techniques [3]. For now, MA does not 
differentiate Cx. pipiens mosquitoes by complexes. While 
this study has some of these limitations, the knowledge 
gained and the rapid and massive data acquisition clearly 
show the potential and clear utility of citizen science data 
for mosquito surveillance.

The surge in MA reports following the press release 
underscores the value of citizen science in monitoring 
mosquito activity. The high level of public engagement 
during the 1-month period did provide a comprehen-
sive dataset for creating predictive models, enabling a 
nuanced understanding of spatial mosquito dynamics 
across the Netherlands. This approach highlights the 
potential for leveraging citizen contributions to enhance 
surveillance efforts and inform targeted intervention 
strategies. In regions where citizen science data has been 
collected for many years, one can use the bite reports to 
investigate biting anomalies that could target interven-
tions. More temporal data would enrich these models 
even more, so increased and sustained marketing efforts 
throughout the year would be necessary. In addition, col-
lecting more data might aid in creating minimum data 
requirement protocols (MRPs) to minimize the impact 
of convenience sampling biases in citizen science-based 
modeling [98, 99]. For instance, establishing minimum 
and maximum reporting thresholds per area and sam-
pling intervals can help create better predictive maps by 
minimizing self-selection biases from hyper-motivated 
participants or successful engagement campaigns, or 
large under-sampling in some areas that would limit data 
representativeness.

Future research to incorporate citizen science data 
into current vector models using traditional sampling 
methods would be beneficial in creating more robust 
predictions of mosquito vectors in the Netherlands 
[100]. However, it should be noted that adult Cx. pipi-
ens mosquitoes found through MA are not trapped in 
the traditional way, as most studies do to assess Cx. pipi-
ens distribution and abundance [101–103]. Instead of a 
burden, however, this might represent an opportunity. A 
previous citizen science project in Germany has shown 
that most Culex mosquito reports are submitted from 
people’s homes, while traditional traps are placed out-
doors and not directly around residents’ homes [77]. In 
this way, data from citizen scientists might represent a 
better inference of mosquito exposure rather than mos-
quito abundance, highlighting the need for more studies 
to examine where people are more likely to be exposed to 
mosquitoes. These combined data collections in models 
could help better identify the factors influencing human–
mosquito interactions and bite frequency, which may not 
necessarily be the same as those modulating mosquito 
abundance, thus providing valuable insights for targeted 
intervention and monitoring efforts to manage mosquito 
populations and mitigate mosquito biting activity.

Additionally, including more human behavioral 
components in the models may better explain mosquito 
exposure and biting activity [104]. For instance, using 
long-term information related to human perception 
of mosquitoes and MBDs by using the MosquitoWise 
survey to collect these data might increase the explained 
variance for citizen science-based models, especially 
when it comes to mosquitoes biting humans [97, 105]. In 
addition, incorporating epidemiological data on MBDs 
(such as WNV and USUV) from birds, humans, and other 
host populations into these citizen science models and 
maps can be a further step to identify potential hotspots 
for disease spread and to enhance early warning systems. 
Rather than replacing traditional surveillance, these 
reports could complement existing monitoring programs 
and aid in public health decision-making by identifying 
areas of heightened concern where further sampling or 
vector control measures should be prioritized.

Naturally, there can be some challenges when 
combining citizen science data with traditional data. 
Citizen science data might be sporadic, depending on 
participant availability and interest (i.e., convenience 
sampling), whereas traditional data often follows a 
consistent temporal sampling schedule. This disparity 
can create gaps or over-representation of certain 
periods. Traditional data collection sites are often 
predefined and may cover specific landscapes (e.g., 
urban, peri-urban, rural). In contrast, citizen science 
data is typically clustered around populated areas, but 
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also can cover gaps in less populated or inaccessible 
regions. This is where establishing MRPs and other bias-
correction methods (scale-dependent sampling effort 
models) can aid in overcoming these challenges and 
standardizing the citizen science data so that it can be 
more easily combined with traditional data to leverage 
integrated predictive models. The union of traditional 
data collection, citizen science data, and several factors 
(such as epidemiological, ecological, and sociological 
variables) in these models would greatly contribute to 
our understanding of mosquito–human dynamics and 
prevention of MBD outbreaks.

Conclusions
Using citizen science data, this study reveals that the 
eastern regions of the Netherlands have high mosquito 
estimates whereas densely populated urban areas and 
national parks have lower estimates in August. These 
results were similar to those found by studies using more 
traditional trapping methods. Bite activity appeared 
more generally spread throughout the country for the 
same period, but with more nuanced variability on a local 
scale. By highlighting sociodemographic factors such as 
population density and income, as well as environmental 
variables such as agricultural areas, our findings 
provide insights into drivers of mosquito abundance 
and activity. While this study only provides a spatial 
snapshot of the situation of Cx. pipiens during summer 
in the Netherlands, it is a springboard for innovation in 
mosquito surveillance modeling. Citizen science data can 
complement traditional surveillance methods to create 
more robust and real-time predictive models by filling 
knowledge gaps and overcoming challenges associated 
with traditional data collection.
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