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Abstract 

Background Microsporidians (Microsporidia) are a group of obligate intracellular parasites that commonly infect 
mosquitoes. Recently, it has been shown that infection by these parasites can alter the composition and functionality 
of the mosquito-associated microbiome. The host-associated microbiome of the mosquito can play a pivotal role 
in various physiological processes of this host, including its vector competence for pathogens. Thus, understanding 
how microsporidians shape the mosquito microbiome may be crucial for elucidating interactions between these 
parasites and their mosquito hosts, which are also vectors for other parasites and pathogens.

Methods The effects of microsporidian infection on the microbiome structure and functionality of Culex pipiens 
and Culex torrentium larvae under semi-natural conditions were examined. The host-associated microbiome of Cx. 
pipiens (n = 498) and Cx. torrentium (n = 465) larvae, including that of the 97 infected individuals of these samples, 
was analysed using 16S DNA profiling and functional prediction analysis.

Results Microbiome network analysis revealed that, in the microsporidian-positive larvae, host microbial 
communities consistently grouped within a common bacterial module that included Aerococcaceae, 
Lactobacillaceae, Microbacteriaceae, Myxococcaceae, and Polyangiaceae. Indicator species analysis revealed 
two strong positive correlations between microsporidian infection and the presence of Weissella cf. viridescens 
and Wolbachia pipientis. Functional predictions of microbiome content showed enrichment in biosynthetic pathways 
for ansamycin and vancomycin antibiotic groups in infected larvae. Furthermore, the MexJK-OprM multidrug-
resistance module was exclusively present in the infected larvae, while carbapenem- and vancomycin-resistance 
modules were specific to the microsporidian-free larvae.

Conclusions Our results demonstrate that microsporidian infection alters the microbial community composition 
in mosquito larvae. Moreover, they show that microsporidian infection can increase the antimicrobial capabilities 
of the host-associated microbiome. These results provide novel insights into host microbiome-parasite interactions 
and have potential implications for the vector competencies of mosquitoes.
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Background
The host-associated microbiome plays a central role in 
several physiological processes of the host, including 
vector competence for parasites and pathogens. The 
microbiome has been shown to mediate the fermentation 
of non-digestible substrates to produce short-chain 
fatty acids, regulate glucose and energy homeostasis, 
metabolise bile acids as signalling molecules, maintain 
aerobic balance in the gut, and produce specific 
metabolites, such as trimethylamine and indolepropionic 
acid [1]. As a dynamic and complex ecosystem, 
the microbiome is integral to maintaining host 
homeostasis, influencing processes such as digestion, 
pathogen defence, and immune system regulation [2–
5]. In addition to providing metabolic functions, the 
microbiome contributes to the synthesis of bioactive 
compounds, including amino acids, vitamins, and short-
chain fatty acids, which are critical for host health, 
development, and survival [6–9].

Mosquitoes (Culicidae) are haematophagous 
arthropods and vectors of numerous human and 
animal pathogens, and their microbiome plays pivotal 
and multifaceted roles. It mediates blood meal 
digestion, modulates the immune response, and exerts 
a significant influence on pathogen transmission 
dynamics [10–14]. For example, the bacteria Serratia 
spp. and Chromobacterium sp. Csp_P strain, and the 
yeast Wickerhamomyces anomalus, which are naturally 
associated with mosquitoes, produce lytic enzymes and 
toxin metabolites that directly impact Plasmodium spp., 
reducing their capacity to develop in Anopheles and 
Aedes mosquitoes [15–18].

Similarly, it has been shown that the endosymbiotic 
bacteria of the genus Wolbachia, which is ubiquitously 
distributed in mosquito populations, may impair 
mosquito competence for virus transmission via 
pathogen interference in their invertebrate hosts [19–
22]. This effect may be mediated by competition for 
key metabolic resources within mosquito cells, such 
as cholesterol and amino acids [23–27]. Additionally, 
Wolbachia infections trigger critical immune signalling 
pathways, including Toll-like receptor signalling, the 
immune deficiency pathway, and Janus kinase/signal 
transducer and activator of transcription cascades, which 
enhance mosquito immune defences against pathogens 
[27–31].

Mosquitoes can be infected by microsporidians 
(Microsporidia), which are obligate intracellular 
eukaryotic parasites [32]. Among the more than 1500 
described species, over 250 species, representing 34 
genera, have been reported in mosquitoes, including 
human-pathogenic Encephalitozoon hellem [33–35]. 
Microsporidians primarily colonize the adipose tissue 

and epithelium of the digestive system, though they have 
been known to infect a range of tissues, such as muscle, 
germline, and excretory system tissues [34]. Although 
microsporidians are considered typical parasites, some 
mutualistic interactions have been proposed for these 
organisms, such as an influence on host fitness through 
faster larval development, higher adult emergence, and 
larger body size [36–38]. Additionally, some studies have 
reported that the microsporidian species Microsporidia 
MB, which was recently discovered in Africa, impairs the 
development of Plasmodium falciparum in Anopheles 
arabiensis [39].

Even though microsporidians have been the subject of 
extensive research for decades, reports on their ability 
to modulate the host-associated microbiota have only 
appeared recently [40–48]. In honeybees (Apis cerana 
and Apis mellifera), infection by Vairimorpha ceranae 
significantly decreased the abundances of fungi belonging 
to the genera Podosphaera and Blumeria, and bacteria 
belonging to the genus Bifidobacterium and the family 
Pasteurellaceae, whereas it increased the abundances 
of the bacteria belonging to the genera Rosenbergiella 
and Serratia [41–43]. In wild bumblebees (Bombus 
terrestris), a bacterium of the genus Snodgrassella was 
associated with Nosema bombi infections [44, 45]. In 
silkworms (Bombyx mori), infection by Nosema bombycis 
resulted in a significant decline in microbiota diversity, 
while Enterocytozoon hepatopenaei infection in shrimps 
resulted in a proliferation of pathogenic bacteria [47–49].

However, in mosquitoes, the effects of microsporidians 
on the host microbiome remain largely understudied 
[40]. It has been shown that microsporidian infection in 
field-collected adult mosquitoes correlates with changes 
in the composition and function of the microbiome. The 
infected mosquitoes exhibited the exclusive presence 
of the bacteria Weissella cf. viridescens and a strong 
association with Spiroplasma sp. [50]. Moreover, 
the infection of Aedes aegypti larvae by Edhazardia 
aedis resulted in a significant increase in the Serratia 
marcescens bacterial load [51]. Recently, functional 
predictions for the microbiome in microsporidian-
infected adult mosquitoes indicated an enrichment of 
metabolic pathways related to defence functions and 
synthesis of precursors of nucleotides, suggesting that 
microsporidians may influence host metabolism through 
microbiome modulation [50].

In adult mosquitoes, the microbiome is shaped 
mainly by diet and migration. However, in the case of 
mosquito larvae, the composition of the microbiome is 
predominantly influenced by the aquatic environment 
where they live and find food [13, 52–55]. This 
environmental dependency makes the larval model 
especially valuable for studying interactions among 
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parasites and the host-associated microbiome. Thus, 
the aim of this study was to investigate the impact 
of microsporidian infection on the mosquito larvae 
microbiome, focusing on changes in the structure and 
functionality of the microbiome. Using semi-natural 
experimental conditions to minimise external biotic 
and abiotic factors, we sought to elucidate the dynamics 
of host-associated microbiome modulation during a 
microsporidian infection [52, 53].

Methods
Materials
For this study, DNA isolates from a total of 963 Culex 
pipiens (n = 498) and Culex torrentium (n = 465) 
larvae, collected for a previous study [56] between 
July and August 2022 from Morasko, Poznan, Poland 
(52°28′03.7"N 16°55′59.8"E), were used. The larvae 
had been collected from a 50-L barrel by using a larval 
dipper and individually preserved in 96% ethanol 
immediately after collection, without being reared or 
maintained as a colony in the laboratory. Forty-six of 
the 498 (9.2%) Cx. pipiens and 47 of the 465 (10.1%) Cx. 
torrentium larvae were positive for one microsporidian 
species,’Microsporidium’sp. PL03. A DNA sample 
extracted from 20 L of the water in which the larvae had 
been living, and a blank DNA extraction, were used as 
negative controls and were analysed together with the 
tested samples.

Microbial community profiling
For microbial community profiling, we used the V4 
region of the 16S ribosomal RNA (rRNA) gene. Detailed 
information on the polymerase chain reaction (PCR) 
protocol and amplicon sequencing is described in a 
previous study [50]. Briefly, for the PCR, we used the 515 
F (GTG CCA GCMGCC GCG GTAA) and 806R (GGA 
CTA CHVGGG TWT CTAAT) primers [57] tailed at the 
5′-ends with dual-indexed Ion Torrent A and P adapters. 
Sequencing was performed using the Ion 540 Kit-OT2 
and Ion 540 chip on the Ion S5 system (Life Technologies, 
USA), according to the manufacturer’s protocol, with a 
planned minimum 100,000 reads per sample analysed.

Read processing and data analysis
Short reads (< 180 base pairs) were removed from 
the dataset using Geneious Prime version 2023.1.2 
(Biomatters). We used the FastX-Toolkit [58] to extract 
sequences with > 50% of bases having a quality score 
≥ 25. Sequences were divided by indexes in Geneious 
Prime and trimmed at the 5′- and 3′-ends to remove 
PCR primers. Amplicon sequencing variants (ASVs) 
were generated using the DADA2 denoise-pyro method 
implemented in QIIME2 version 2024.10 [59, 60]. ASVs 

detected in control samples were removed from the 
dataset using the UNCROSS2 algorithm [61]. Thereafter, 
ASVs were compared with reference sequences in the 
SILVA database using ARB for small subunit ribosomal 
RNAs version 138.1 [www. arb- silva. de] [62–64].

The functional potential of the microbial communities 
was predicted by the Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States 
(PICRUSt2) package version 2.4.1 [65]. The ASV 
abundances were normalised using information about 
16S rRNA gene copy numbers in each taxon. The 
resulting ASV table was used for metagenome functional 
prediction by generating a table of Kyoto Encyclopedia 
of Genes and Genomes (KEGG) orthologs [66–68]. 
The predictions were categorised according to KEGG 
orthology levels 1, 2, and 3 within the hierarchical 
structure of the KEGG pathway database. To assess 
the accuracy of the PICRUSt2 predictions, the nearest 
sequenced taxon index was estimated and calculated for 
each sample [69].

Identification of Weissella species
Weissella species were confirmed by PCR amplification 
and Sanger sequencing of a 689-base pair fragment of 
the 16S rRNA gene using S-G-Wei-0121-a-S-20 and S-G-
Wei-0823-a-A-18 primers [70], as described previously 
[50].

Statistical analyses
The Shannon diversity index for individual 
samples was calculated using the vegan package 
version 2.6–8 [71] and compared using a t-test for 
independent means as well as one-way ANOVA 
with post hoc Tukey’s honestly significant difference 
test. A Bray–Curtis-based principal coordinates 
analysis was employed to analyse the microbial 
community compositions. Additionally, ANOVA 
was used to detect differences in the microbiome 
composition between infected and non-infected 
larvae. For determining multivariable association 
between microbiomes, linear models implemented 
in MaAsLin2 were used [72]. Indicator species 
analysis [73] was conducted to evaluate whether 
microsporidian species occurred exclusively during 
specific seasons, and whether their presence was 
consistently associated with particular treatment 
groups, as determined by the A and B components 
of the analysis. The indicator species analysis, based 
on 9 ×  1010 permutations, was performed using the 
multipatt function in the indicspecies package version 
1.7.15 [73, 74]. Pearson’s correlation coefficient (r) 
[75] was calculated to determine the correlations 
between detected taxa. The ecological networks were 

http://www.arb-silva.de
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calculated based on Spearman’s correlation matrix 
using the psych package version 2.4.6.26 [76]. To 
reduce the complexity of the network and enhance the 
resolution of core microbiome community detection, 
only significant (P < 0.05) taxa were visualised using 
the Fruchterman–Reingold layout with an area value 
of 10,000 and gravity value of 10 in Gephi version 
0.10.1 [77].

Results
Host‑associated microbiota of Culex larvae
In total, 107 bacterial families (18 phyla) were identified 
from the analysed samples including the water 
sample, which represented the larval aquatic habitat 
(Table  S1). Of these 107 families, 24 were exclusive 
to mosquito larvae, 37 were exclusive to the aquatic 
habitat, and 44 were common to Culex spp. larvae and 
their aquatic habitat (Fig. S1). Corynebacteriaceae and 
Micrococcaceae were exclusive to Cx. pipiens, while 37 
families were specific for the water sample.

Although general differences in the Shannon diversity 
between infected and non-infected hosts were not 
significant (T = 1.18; P = 0.8), a slight but statistically 
significant difference was observed between Cx. pipiens 
samples (Tukey’s honestly significant difference = 4.13; 
P = 0.02) (Fig. S2). Proteobacteria (Cx. pipiens, 88.33%; 
Cx. torrentium, 72.9%), Bacteroidota (Cx. pipiens, 
2.49%; Cx. torrentium, 11.49%), and Firmicutes (Cx. 
pipiens, 2.54%; Cx. torrentium, 3.88%) were the most 
abundant phyla associated with both mosquito species. 
In the water sample, which represented the larval habitat, 
Bacteroidota (35.23%), Proteobacteria (34.11%), and 
Actinobacteriota (28.54%) were the most abundant phyla 
(Fig. 1; Table S2).

The microbiota of non-infected Cx. pipiens 
was dominated by Rhizobiaceae (67.73%), 
Xanthomonadaceae (12.84%), and Sphingomonadaceae 
(4.68%), while that of infected Cx. pipiens individuals 
was dominated by the families Rhizobiaceae (56.65%), 
Anaplasmataceae (5.36%), and Xanthomonadaceae 
(5.04%). Bacteria belonging to Thorselliaceae (39.69%), 
Rhizobiaceae (7.63%), and Comamonadaceae (6.96%) 
formed the main core of the microbiota of non-infected 
Cx. torrentium larvae (Fig.  2; Table  S1). Thorselliaceae 
and Rhizobiaceae were also the most abundant families 
in the microsporidian-positive Cx. torrentium, reaching 
a similar level of 37.91% and 7.53% sequence reads, 
respectively. The third most dominant family in infected 
Cx. torrentium individuals was the Anaplasmataceae, 
which reached a level of 6.71%. Cluster analysis using 
the unweighted pair group method with arithmetic 

mean demonstrated that the diversity of bacterial 
communities was driven by mosquito species rather than 
by microsporidian infection (Fig. 2).

There were no significant differences in the microbiota 
composition between infected and non-infected larvae 
of either mosquito species (F = 0.001; P = 0.977). 
However, specific bacterial taxa displayed significant 
differences (P < 0.01) in relative abundance between 
these groups (Table  S3). In Cx. pipiens, families such 
as Xanthomonadaceae, Corynebacteriaceae, and 
Xanthobacteraceae were more characteristic for non-
infected larvae (coefficients = 1.35, 1.26, and 1.01, 
respectively). Conversely, the families Lachnospiraceae, 
Pleomorphomonadaceae, Azospirillaceae, and 
Myxococcaceae were significantly less characteristic for 
non-infected larvae (negative coefficients = 3.58, 3.91, 
4.17, and 5.24, respectively). In Cx. torrentium, non-
infected larvae were enriched with Enterococcaceae 
(coefficient = 2.0), Bacillaceae (coefficient 
= 1.86), Bryobacteraceae (coefficient = 1.66), and 
Sphingobacteriaceae (coefficient = 1.58). Polyangiaceae 
(coefficient = 3.08), Leuconostocaceae (coefficient = 3.27) 
and Myxococcaceae (coefficient = 4.91) were significantly 
less abundant.

Fig. 1 Boxplot showing the relative abundances of the phyla 
identified in the examined samples
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Fig. 2 Hierarchical clustering heatmap showing the prevalence (%) of bacterial families in Culex pipiens and Culex torrentium samples positive (M+) 
or negative (M−) for microsporidians, and in water samples. Colour intensity corresponds to prevalence, with light blue indicating low prevalence 
and dark blue indicating high prevalence
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Fig. 3 Principal coordinate (PC) analysis of Bray–Curtis dissimilarity based on microbial community composition. A Samples grouped by microbiota 
composition from early (light green) and late (dark green) larval stages of Culex pipiens, early (light blue) and late (dark blue) larval stages of Culex 
torrentium, and water (red). B Samples colour coded by ‘Microsporidium’ sp. PL03 infection status, where microsporidian-positive individuals (M+) are 
shown in green (Cx. pipiens), blue (Cx. torrentium), and red (water), while non-infected individuals (M−) are shown in grey 
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Principal component analysis also confirmed that 
the larval microbiota was strongly determined by 
mosquito species (Fig.  3A). Early larval stages of Cx. 
pipiens and Cx. torrentium exhibited microbiota 
resembling those of the water habitat, but as 
development progressed, host-associated microbiota 
became more species specific. Overall, microsporidian 
infection did not significantly affect the overall 
microbiota structure, as microbiota of infected larvae 
did not cluster distinctly (Fig. 3B).

Relationship between host‑associated microbiota 
composition and microsporidian infection
Network analysis of the microbiome composition 
of microsporidian-positive Cx. pipiens and Cx. 
torrentium larvae revealed notable differences in 
bacterial community complexity and composition. 
The microbiome network of Cx. pipiens exhibited a 
highly complex architecture (edges = 885; average 

degree = 26.029) characterised by a dense network of 
interactions (density = 0.388) and four major modules 
(Fig.  4A). In contrast, the network of Cx. torrentium 
displayed reduced complexity (edges = 391; density 
= 0.182), with fewer connections per node (average 
degree = 11.848) and five distinguishable modules 
(Fig.  4A). In both Culex species, microsporidian was 
consistently associated with a shared (red) module 
(Fig. 4A).

Across clusters within the module containing 
microsporidian, 19 bacterial families were identified, 
five of which (Aerococcaceae, Lactobacillaceae, 
Microbacteriaceae, Polyangiaceae, and Myxococcaceae) 
were common to both mosquito species (red boxes 
in Fig.  4B). Among these, 10 species were detected: 
Abiotrophia sp., Aerococcus sp. (Aerococcaceae), W. 
cf. viridescens (Lactobacillaceae), Aurantimicrobium 
sp., Curtobacterium sp., Leifsonia sp., Leucobacter sp. 
(Microbacteriaceae), Pajaroellobacter sp., Sorangium 

Fig. 4 A Co-occurrence networks of microbial communities in Culex pipiens and Culex torrentium, from ‘Microsporidium’ sp. PL03-positive individuals. 
Nodes represent bacterial families, with significant co-occurrence relationships (P < 0.05) are shown as edges. B Presence or absence of bacterial 
families is shown within the red module for both Cx. pipiens and Cx. torrentium. Colour intensity indicates prevalence, with dark blue denoting 
presence and light blue denoting absence of a given bacterial family. Taxa identified in both species are marked with a red frame. C Sankey diagram 
showing the systematics of the common taxa in the module containing’Microsporidium’sp. PL03
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sp. (Polyangiaceae), and one species belonging to the 
Myxococcaceae (Fig. 4C).

Indicator species analysis for microsporidian-positive 
mosquitoes showed that W. cf. viridescens displayed 
high values for the exclusive taxon component (A = 1 
and B = 0.18; P = 0.05), and thus a significantly strong 
positive correlation was observed (R = 0.988; P < 0.001) 
(Fig.  5A; Table  S4). The remaining taxa components 
of ’Microsporidium’sp. PL03 module showed slight 
negative or positive correlations, but these relationships 
were not statistically significant (Table  S4). Beyond 
this module, Wolbachia, an exclusive taxon from the 
Anaplasmataceae, displayed a strong significant positive 
correlation with microsporidian infection (R = 0.95; P < 
0.001) (Fig. 5B; Table S4).

Relationship between host‑associated microbiome 
function and microsporidian infection
Using the 16S amplicon dataset, PICRUSt2 analysis 
identified 156 functional pathways based on KEGG 
pathway metadata. The predicted metagenomes 
exhibited nearest sequenced taxon index scores ranging 

from 0.0001 to 0.293, with mean values of 0.062 and 0.058 
for infected and non-infected mosquitoes, respectively.

Among the KEGG orthology level 2 pathways, 
carbohydrate metabolism, amino acid metabolism, 
and the metabolism of cofactors and vitamins were 
the most prevalent in both infected and non-infected 
Culex species. Each of these pathways exceeded 10% in 
relative abundance (Fig. S3; Table  S5). Other metabolic 
pathways, related to metabolism of lipids, terpenoids, 
and polyketides, constituted 6–8% each, while less 
abundant pathways, including energy metabolism, glycan 
biosynthesis, and xenobiotics biodegradation, ranged 
from 3 to 6% each. The other pathways contributed 
< 3% to the predicted metagenomic profiles each (Fig. 
S3; Table  S5). Hierarchical clustering revealed that 
microbial functional profiles were primarily determined 
by mosquito species, with infection status exerting only 
a minor effect on certain pathways, such as xenobiotics 
biodegradation and lipid metabolism (Fig. S3).

A total of 155 biological pathways at level 3 were 
reconstructed in both Culex species, of which 154 
belonged to Cx. pipiens and 152 to Cx. torrentium 
(Fig. S4; Table  S6). Among the 30 most relevant 

Fig. 5 Relationship between the number of’Microsporidium’sp. PL03 ribosomal DNA copies and A contribution of Weissella cf. viridescens and B 
Wolbachia between the Culex spp. Dashed red lines represent fitted regression models, with shaded areas indicating the 95% confidence intervals
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pathways, approximately 80% (76.67%) were 
associated with metabolism and 13.3% with genetic 
information processing. The remaining 10% were 
associated with cellular processes and environmental 
information processing (6.67% and 3.33%, respectively) 
(Fig.  6A; Table  S7). Among the dominant pathways, 
significant changes were observed in four pathways of 
microsporidian-positive larvae of both Culex species. 
Ansamycin biosynthesis activity was elevated nearly 
twofold in infected Cx. pipiens and 1.5-fold in infected 
Cx. torrentium, while vancomycin biosynthesis increased 
by 2.6-fold and twofold, respectively (Fig. 6B; Table S7). 
The difference in the pentose phosphate pathway 
between infected and non-infected individuals was 
< 0.05% and was not statistically significant. Glutathione 
metabolism decreased by 1.2-fold in infected Cx. pipiens 
but increased by 1.4-fold in infected Cx. torrentium. 
Conversely, aminoacyl transfer RNA biosynthesis 

increased by over onefold in Cx. pipiens and decreased 
by a similar magnitude in Cx. torrentium (Table S7).

Thirteen signature modules (i.e. functional units of 
gene sets) associated with drug resistance were identified 
through the reconstruction of signalling modules in 
the Culex larval microbiome (Table  S8). Among them, 
10 were present in both infected and non-infected 
mosquitoes. A common signature module unique to 
microsporidian-positive individuals of both species was 
multidrug-resistance efflux pump MexJK-OprM. Non-
infected mosquitoes were characterised by modules 
linked to carbapenem and vancomycin resistance, 
including the D-Ala-D-Lac type module (Fig. S5).

Discussion
Our results show that the core microbial composition 
of mosquito larvae consists of Proteobacteria 
(approximately 80%), Bacteroidota (approximately 7%) 

Fig. 6 A Hierarchical clustering heatmap showing the prevalence (%) of the most prevalent functional metabolic profiles at level 3 
of the microbiome in Culex pipiens and Culex torrentium infected by ‘Microsporidium’ sp. PL03 (M+) and non-infected ones (M−). Colour intensity 
reflects prevalence, with light blue indicating low prevalence and dark blue indicating high prevalence. Raincloud plots for the proportion 
of sequences assigned to the activity of the ansamycin (B) and vancomycin biosynthesis pathways (C) in Cx. pipiens and Cx. torrentium infected 
by ‘Microsporidium’ sp. PL03 (M+) and non-infected ones (M-)
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and Firmicutes (approximately 5%). This distribution 
reflects the dominant phyla frequently observed across 
mosquito microbiota and aligns with previous studies, 
where Actinobacteria, Bacteroidota, Proteobacteria, and 
Firmicutes were reported as the most abundant phyla in 
Aedes aegypti and Mansonia spp. larvae. Together they 
make up approximately 90% of the microbiota [78–80]. 
Similarly, Proteobacteria, Cyanobacteria, Bacteroidetes, 
and Firmicutes were the most abundant phyla in Culex 
tarsalis [54].

Our study revealed that early-instar larvae of Culex 
spp. shared bacterial community structure with that of 
their surrounding aquatic environment. However, as their 
development progressed, the composition of their host-
associated microbiota became dissimilar, and was specific 
to the mosquito species. This observation supports the 
hypothesis that the mosquito larval microbiota closely 
mirrors microbial communities in the water habitat 
during early developmental stages, but diverges as 
larvae age [54, 78, 81]. This is confirmed by the greater 
diversity of microbial taxa in early-stage larvae, which 
suggests that microbial filtering and selection processes 
occur during larval development, reducing diversity by 
the late-instar stages [54, 78, 82]. Culex pipiens exhibited 
higher network connectivity in their microbiota 
composition, whereas Cx. torrentium displayed lower 
microbial connectivity. Notably, these observations for 
Cx. pipiens align with findings from laboratory studies 
of Culex pipiens f. molestus and Culex quinquefasciatus, 
where the microbiota network of Cx. pipiens f. molestus 
similarly demonstrated greater complexity and stronger 
correlations than that of Cx. quinquefasciatus [83]. 
These differences may be influenced by host-specific 
factors, environmental factors, or distinct ecological 
interactions, such as those related to resource availability 
or competition.

We found positive correlations between microsporidian 
infection and specific host-associate microbiota, such as 
Weissella cf. viridescens and Wolbachia, which further 
highlight the intricate interplay between host microbiota 
and microsporidians. The occurrence of W. cf. viridescens 
in Culex larval microbiota was unequivocally associated 
with microsporidian infection. This is consistent with 
results of a previous study [50] conducted on adult 
mosquitoes collected in the field, where W. cf. viridescens 
was detected exclusively in microsporidian-positive 
individuals. One reason for this is that infection-induced 
acidification of the intestinal lumen environment creates 
conditions favourable for colonization by Weissella, 
which is a lactic acid bacterium well adapted to low-pH 
environments [84, 85]. This hypothesis aligns with the 
results of studies demonstrating that microsporidian 
infections reduce gut pH, creating a selective 

environment for acid-tolerant species such as Weissella 
spp. [84, 85]. However, the dynamics of Weissella spp. 
abundance under pathogenic stress remain complex. 
For example, studies on interactions between Weissella 
confusa (Bacilli: Lactobacillaceae) and Paranosema 
locustae (Microsporidia) in migratory locust (Locusta 
migratoria) suggest a transient increase in W. confusa 
abundance during early infection stages, followed by a 
decline as pathogenic stress intensifies. These findings 
indicate a dual role for Weissella: a transient opportunist 
or a long-term protective symbiont. Moreover, 
reductions in Weissella abundance have been correlated 
with increased host mortality, suggesting potential 
protective effects mediated by competitive exclusion, 
antimicrobial metabolite production such as that of 
bacteriocins, and stabilisation of the gut microbiome 
under stress [86]. Further research that measures gut pH 
and explores the functional contributions of Weissella 
spp. in infected hosts is warranted to elucidate its role 
in the interplay between host, pathogen, and the host-
associated microbiome. Such findings could expand 
our understanding of the ecological roles of lactic acid 
bacteria in gut ecosystems under pathogenic stress and 
their potential application in managing insect health in 
the context of biological control strategies.

The presence of microsporidians was also strongly 
positively related to the prevalence of Wolbachia. The 
observed positive correlation between the abundance 
of microsporidia and Wolbachia may be explained by 
an indirect mechanism in which oxidative stress plays 
a pivotal role. Infection with microsporidia, such as 
Vairimorpha ceranae or Encephalitozoon cuniculi, 
induces the production of reactive oxygen species, 
leading to oxidative stress in host cells. In response, the 
host activates antioxidant enzymes, including catalase 
and glutathione S-transferase, to neutralise reactive 
oxygen species and protect cellular structures [87–90]. 
Previous studies have demonstrated that elevated levels 
of antioxidants promote the proliferation of Wolbachia, 
which benefit from the enhanced redox environment of 
the host [31]. Oxidative stress induced by microsporidian 
infection might exhibit tissue specificity, as evidenced by 
the high proliferation of Wolbachia in the gut. However, 
further investigations focusing on immune responses, 
particularly Toll-like receptor signalling and immune 
deficiency pathways, leading to oxidative stress responses 
[91], as well as Wolbachia proliferation in different tissues 
under microsporidian infection, are warranted to further 
elucidate these mechanisms.

Our metagenomic analyses suggest that microsporidian 
infection alters the functional potential of the mosquito 
microbiome, increasing the abundance of bacterial taxa 
associated with the synthesis of the antibiotics ansamycin 
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(approximately 1.8-fold) and vancomycin (approximately 
2.3-fold). These results align with those of a previous 
study conducted on field-collected adult mosquitoes, 
which exhibited an approximately 1.6-fold upregulation 
in the ansamycin biosynthetic pathway and a 1.8-fold 
upregulation in the vancomycin biosynthetic pathway 
[50]. In contrast to the present study, the activity of 
the pentose phosphate pathway showed no differences 
between infected and non-infected larvae; although a 
slight overall increase in pentose phosphate pathway 
activity was observed in the microsporidian-positive 
larvae analysed, the difference between infected and non-
infected individuals was negligible. This suggests that 
the mosquito microbiome adopts a defensive strategy 
by producing antibiotics, such as ansamycins and 
vancomycin. Therefore, by producing these antibiotics, 
the microbiome probably limits opportunistic pathogen 
invasion and enhances host resilience [92].

A heightened capacity to produce antibiotics appears 
to be a natural defence mechanism that helps to protect 
the host, which has been weakened by parasitic infection. 
Ansamycins are a group of bacterial macrocyclic 
polyketides known for their wide range of inhibitory 
effects, including antibacterial, antifungal, antiviral, and 
immunosuppressive properties [93–95]. In contrast, 
vancomycin is a glycopeptide antibiotic with a branched 
tricyclic structure that disrupts cell wall synthesis 
of Gram-positive bacteria [96–98]. The increased 
production of antibiotics, particularly ansamycins, 
may also reflect a competitive strategy within the gut 
niche, where microsporidia impose selective pressures 
on the microbial community by competing for limited 
resources and space. In response, bacteria synthesize 
secondary metabolites, such as ansamycins, not only to 
inhibit or eliminate competitors but also to modulate the 
gut microenvironment in a manner that enhances their 
survival and ecological fitness [99–102].

Additionally, reconstruction of multidrug-resistance 
efflux pump MexJK-OprM in the Culex larval 
microbiome suggested that microsporidian infections 
induce oxidative stress in mosquitoes, disrupting cellular 
homeostasis, including quorum sensing signalling within 
the microbiome [87, 90]. This disturbance may activate 
bacterial efflux pump (MexJK) activity, which is known to 
modulate siderophore production and iron homeostasis 
[103–105]. Activation of MexJK may facilitate the 
efflux of siderophores or other iron-regulatory 
molecules, increasing the availability of free iron in the 
mosquito host, and thus, indirectly benefit intracellular 
microsporidia, which require iron for replication and 
proliferation [90]. However, it is important to note that 
this proposed mechanism remains hypothetical and 
warrants further investigation. Targeted approaches, 

for instance, such as genetic manipulation of bacterial 
efflux pumps and host-microbe co-culture models under 
controlled oxidative conditions, can be utilised for the 
experimental validation of this hypothesis.

Overall, our study highlights the complex and 
dynamic interactions within the host-associated 
microbiome. Future research should focus on 
disentangling the mechanistic underpinnings of 
these interactions, particularly the functional roles 
of Weissella cf. viridescens and Wolbachia, to better 
understand their potential applications in vector 
and pathogen control. These insights may inform the 
development of targeted microbiome-based strategies 
for managing mosquito-borne diseases.

Conclusions
We demonstrated that microsporidian infection alters 
the composition of microbial communities in mosquito 
larvae. We showed that, during microsporidian 
infection, host microbial communities consistently 
grouped with microsporidians within a common 
bacterial module that included the same five bacterial 
families. Additionally, Weissella viridescens and 
Wolbachia pipientis were strongly positively correlated 
with the presence of microsporidians. This result 
corroborates earlier observations that microsporidians 
modulate the gut microbiome in mosquitoes, and 
underscores their significance in host microbial 
networks and host microbiome-parasite interactions. 
Moreover, the results suggest that microsporidian 
infection can enhance antimicrobial capabilities by 
increasing the synthesis of the antibiotics ansamycin 
and vancomycin in infected mosquito larvae. This 
finding may be pertinent to the prospect of using 
microsporidians as biological agents to restrict the 
development of Plasmodium or Dirofilaria in mosquito 
tissues. However, further research is warranted to 
substantiate this hypothesis. This research should also 
determine actual metabolic activity, and experimental 
infections under controlled conditions should be 
conducted to test the hypothesis.
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