Skip to main content

Vector-borne pathogens in dogs from the Republic of Kosovo

Abstract

Background

Canine vector-borne pathogens (CVBP) are transmitted by arthropod vectors such as ticks, fleas, mosquitoes, and phlebotomine sand flies and are of global veterinary and medical importance. Dogs are important reservoir hosts, which may develop potentially life-threatening clinical signs. The Balkan area harbors diverse vector fauna and associated CVBPs, and data, particularly from the Republic of Kosovo, are scarce. Considering the high number of stray and privately owned dogs primarily kept outside, living in close contact with dogs might promote spillover of zoonotic pathogens to human populations. To combat these diseases, a One Health approach is required. Therefore, our study molecularly analyzed samples of dogs for CVBP.

Methods

Blood samples of 276 dogs originating from all seven districts of Kosovo collected from 2021 to 2022 were screened using polymerase chain reaction (PCR) and sequencing for a substantial set of pathogens, including Anaplasma spp., Babesia spp., Bartonella spp., Ehrlichia spp., Filarioidea, Hepatozoon spp., Mycoplasma spp., Rickettsia spp., and Trypanosoma spp. Prevalence rates were statistically assessed on the basis of various factors such as sex, breed, age, and district.

Results

In total, 150 (54.3%) dogs tested positive for at least one pathogen, comprising eight species of five genera. The most prevalent pathogens detected were Candidatus Mycoplasma haematoparvum (55; 19.9%), Hepatozoon canis (52; 18.8%), and Mycoplasma haemocanis (49; 17.8%). We also detected double (32; 11.6%) and triple (5; 1.8%) infections, with the latter involving combinations of Mycoplasma spp., Dirofilaria repens, Dirofilaria immitis, H. canis, or Babesia vulpes. In addition, prevalence rates were calculated and mapped by district. Of all included factors, significant prevalence differences were found for purebred/mixed breed dogs as well as between age groups.

Conclusions

This study provides the first comprehensive polymerase chain reaction (PCR)-based screening and detection of vector-borne pathogens in dogs from Kosovo and highlights the circulation of pathogens with high veterinary importance and zoonotic potential.

Graphical Abstract

Background

Canine vector-borne pathogens (CVBP) comprise a wide range of globally distributed pathogens, including viruses, bacteria, protozoan parasites, and helminths that are transmitted by arthropod vectors such as ticks, fleas, mosquitoes, and phlebotomine sand flies [1]. Dogs can act as reservoir hosts and many CVBPs might develop after long incubation periods without pathognomonic clinical signs, which makes diagnosis challenging. Some also potentially cause life-threatening complications [2]. Combating these diseases requires a One Health approach as many of these pathogens have zoonotic potential, and living in close contact with dogs might promote spillover to human populations [3].

Among many others, the tick-borne pathogens Anaplasma spp., Ehrlichia spp., and Rickettsia spp., the mosquito-borne nematodes Dirofilaria immitis and Dirofilaria repens, as well as the sand fly-borne protozoan parasites Leishmania spp. have been reported to infect both humans and dogs [46]. In recent decades, globalization (e.g., commercial transportation, tourism, and dog travel), along with climate and environmental changes, has promoted the growth of vector populations, the shift in CVBD distribution across Europe, and their introduction to previously nonendemic areas [7].

The Balkan area harbors a diverse vector fauna; however, data on CVBD are often scant and based on heterogeneous detection methods (e.g., serology, polymerase chain reaction (PCR)-based) or completely missing for some countries [810]. In the Republic of Kosovo, a landlocked country in the center of the Balkans bordered by Montenegro, Serbia, Albania, and North Macedonia, data on vector-borne diseases are scarce, particularly for dogs. Particularly, the high number of stray dogs and their exports to other European countries urge for detailed understanding of CVBDs in the country. Few recent studies indicate the endemicity of important vector species and the circulation of associated diseases. The most abundant tick species, Ixodes ricinus, was found infected with Anaplasma phagocytophilum, Babesia microti, Borrelia spp., and Rickettsia spp. [11, 12]. In addition, antibodies against Anaplasma, Borrelia, and Ehrlichia in dogs have been reported by Sinani et al. in 2020 [13]. Noteworthy, data on the brown dog tick (Rhipicephalus sanguineus sensu lato) and its importance as a vector of CVBPs are currently lacking from Kosovo. The mosquito fauna has been investigated to comprise 13 species of six genera, and Aedes albopictus, the Asian tiger mosquito, was detected in 2020 in the southern part of the country for the first time [14, 15]. Dirofilaria immitis seropositive dogs, which had prevalence rates up to 28.6%, were observed in six of the seven districts of Kosovo [13]. Recent studies have highlighted a diverse sand fly fauna comprising nine species, with the first detection of Leishmania infantum in vector species and canine leishmaniasis seroprevalence in six of seven districts [1618].

Considering the high number of stray dogs and many privately owned dogs that are primarily kept outside, further elucidation of the circulation of CVBDs, particularly those of zoonotic concern, is crucial to combat their transmission and spread. Therefore, this study aimed to analyze blood samples of dogs that have previously been subject to a canine leishmaniasis seroprevalence study [18] by targeting the detection of selected vector-borne pathogens with PCR and sequencing.

Methods

Study area

The present study was conducted in the Republic of Kosovo, a landlocked country in the center of the Balkan Peninsula in South-Eastern Europe. It is located between latitudes 41° and 43° N and longitudes 20° and 22° E. The study area has a continental climate with Mediterranean and Alpine influences. Kosovo is divided into seven districts according to the law of Kosovo, namely Pristina (01), Mitrovica (02), Peja (03), Prizren (04), Ferizaj (05), Gjilan (06), and Gjakova (07). In the countryside, agricultural activities include farming various animals (cattle, sheep, goats, poultry, and pigeons). Many dogs (stray, kept in private households, or shepherd dogs) are widely present.

Dog samples and sample size

For this study, available blood samples taken in the frame of a Leishmania seroprevalence study in Kosovo [18] were used, which originated from dogs in private households, stray dogs (kept in shelters), and shepherd dogs. All samples were collected following the basic ethical principles and were marked by the name of the dog or chip number, location, age, breed, sex, and health status (random pathology, e.g., dermatitis, arthritis, tumor, and vasculitis).

DNA extraction and PCR-based pathogen detection

Before DNA isolation, samples were vortexed, 200 µL blood was placed in a new tube, and 200 µL phosphate-buffered saline (PBS) was added. Thereafter, 200 µL of AL buffer was added, vortexed, and incubated at 56 °C at 550 rpm for 10 min. Then, DNA isolation was performed using the Dneasy® Blood and Tissue Kit 250 (Qiagen, Hilden, Germany) following the manufacturer’s protocol with final elution in 100 µL. The DNA was stored at −20 °C until further use.

All DNA samples were tested by PCR for the presence of DNA of the following pathogens: Anaplasma spp., Babesia spp., Bartonella spp., Ehrlichia spp., Filarioidea, Hepatozoon spp., Mycoplasma spp., Rickettsia spp., and Trypanosoma spp. In addition, samples showing positive results for filarioid helminths were analyzed with species-specific PCRs for D. immitis and D. repens for inclusion of potential mixed infections. Primers and PCR protocols are presented in Table 1.

Table 1 PCR-based protocols for the detection of various pathogens used in this study

All PCRs were performed with either a GoTaq® DNA Polymerase Master Mix (Promega, Walldorf, Germany) or a 2 × EmeraldAmp® GT PCR Master Mix (Takara Bio Europe AB, Göteborg, Sweden) in a final volume of 25 µL with either an Eppendorf Mastercycler (Eppendorf AG, Hamburg, Germany) or Biometra® Cycler (Analytik Jena, Jena, Germany). Bands were analyzed, cut out from the gel, and purified, as described elsewhere [16]. The samples were sent to Microsynth (Microsynth Austria GmbH, Vienna, Austria) and LGC Genomics (LGC Genomics GmbH, Berlin, Germany) for Sanger sequencing. The sequences were uploaded in the National Center for Biotechnology Information (NCBI) sequence database (accession numbers in the results section) and compared with reference sequences using the Basic Local Alignment Search Tool (BLAST) in NCBI GenBank.

Statistical analysis and mapping of prevalences

Data were prepared with Microsoft Excel for Mac and analyzed with RStudio for Mac [19]. Categorical data were analyzed using Fisher’s exact test, using overall prevalence as a predictor variable. Odds ratios (OR) with exact 95% confidence intervals (CI) were estimated. A two-sided P-value < 0.05 was considered statistically significant. Prevalence was mapped with QGIS [20] using first-level administrative divisions of Kosovo (year 2015) taken from https://earthworks.stanford.edu/catalog/stanford-zh532mm5047.

Results

Detected pathogens

Overall, samples of 276 dogs were analyzed, comprising 138 females and 138 males from all seven districts collected in 1 year between summer 2021 and spring 2022. The mean age was 3.8 years (standard deviation (SD): 2.7 years), with the youngest dog being 4 months old and the oldest 16 years old. In total, 107 (38.8%) were purebred and 169 (61.2%) were mixed breeds. Of all dogs, 238 (86.2%) were classified as healthy and 38 (13.8%) as disrupted (random pathology unrelated to canine leishmaniasis such as dermatitis, arthritis, tumor, or vasculitis). Of the samples, 50 originated from Pristina district (01), 40 from Mitrovica (02), 35 from Peja (03), 38 from Prizren (04), 35 from Ferizaj (05), 40 from Gjilan (06), and 38 from Gjakova (07).

DNA of at least one pathogen was detected in 150 (54.3%; 95% CI 48.3–60.3) dogs, comprising eight pathogens of five genera (Table 2). Altogether, 55 (19.9%; 95% CI 15.5–25.2) DNA samples were positive for Candidatus Mycoplasma haematoparvum, 52 (18.8%; 95% CI 14.5–24.1) for Hepatozoon canis, 49 (17.8%; 95% CI 13.5–22.9) for Mycoplasma haemocanis, 15 (5.4%; 95% CI 3.2–9.0) for Dirofilaria immitis, 11 (4.0%; 95% CI 2.1–7.2) for D. repens, 4 (1.5%; 95% CI 0.5–3.9) for Babesia vulpes, 3 (1.1%; 95% CI 0.3–3.4) for B. gibsoni, and 1 (0.4%; 95% CI 0–2.3) for Anaplasma phagocytophilum. No Bartonella spp., Ehrlichia spp., Rickettsia spp., and Trypanosoma spp. DNA was detected.

Table 2 Detected pathogens by sex, health status, and breed

Significant differences in overall prevalence were only found for the parameters of breed and age group (Table 3). The prevalence was significantly higher in purebred compared with mixed-breed dogs (OR = 1.7, P = 0.04), and significantly higher prevalence rates were found in the age groups 4–6 years (OR = 2.6, P = 0.03), 6–8 years (OR = 4.1, P = 0.02), and over 8 years (OR = 2.8, P = 0.05) compared with the youngest dogs from the 0–2 years age group (Table 3). No significant differences were observed between sexes or health status.

Table 3 Overall prevalence associated with different factors

Co-infections

Of all positive samples, 113 (40.9%) were single, 32 (11.6%) were double, and 5 (1.8%) were triple infections. All pathogens except A. phagocytophilum were associated with at least one double infection. Generally, co-infections with two pathogens were highest, including H. canis and Candidatus M. haematoparvum (13/32, 40.6%), followed by H. canis and M. haemocanis (8/32, 25.0%) and D. immitis and D. repens (6/32, 18.8%) (Fig. 1).

Fig. 1
figure 1

Number of detected double infections

No significant differences in overall double infections associated with sex, health status, or breed were detected, neither between age groups nor districts.

Co-infections with three pathogens were observed in five dogs, all involving Mycoplasma, four Dirofilaria, two H. canis, and one B. vulpes (Supplementary Table 1). No significant differences between triple infections and risk factors were detected; however, a much higher but not significant triple infection rate was observed in purebred compared with mixed breeds (OR = 6.5, P = 0.08).

Prevalence by district

Overall prevalence rates were highest in Prizren (68.4%) and lowest in Gjilan (42.5%) (Fig. 2). In dogs originating from Gjakova, seven of eight pathogens were detected, followed by Pristina, Peja, and Prizren with six pathogens, and Mitrovica, Ferizaj, and Gilan with five pathogens (Table 3). Dirofilaria immits, H. canis, M. haemocanis, and Candidatus M. haematoparvum were detected in all seven districts, whereas Anaplasma phagocytophilum was only detected in a dog from Gjakova 07.

Fig. 2
figure 2

Prevalence of detected pathogens by district. Overall prevalence (a), A. phagocytophilum (b), Babesia gibsoni (c), Babesia vulpes (d), Dirofilaria immitis (e), Dirofilaria repens (f), Hepatozoon canis (g), Mycoplasma haemocanis (h), and Candidatus Mycoplasma haematoparvum (i)

Pathogen typing

Anaplasma phagocytophilum was detected in one female dog only. The obtained sequence was identical to bacteria described in dogs from South Korea (MK239931) [21] and grey wolves (Canis lupus) from Germany (MN790646) [22].

DNA of B. vulpes (PP462098) was detected in 2.9% of the blood samples, which were identical to parasites documented in dogs from Russia (MT509981) [23]; Kyrgyzstan (OR116236) [24]; Spain [25, 26]; France [27]; and a confiscated pit bull terrier in the USA named Babesia sp. “Spanish dog” (EU583387) [28]. Moreover, it was examined in Dermacentor reticulatus in Austria [29] and raccoon dogs (Nyctereutes procyonoides) in Austria [30] and South Korea (OM510442). It was mainly detected in red foxes (Vulpes vulpes) in Austria [31, 32], Italy (KY486299), Spain (KT223483), Turkey [33], China (MW192450), the UK [34], the Czech Republic [35], Slovakia (KY175167), Croatia [36], and Bosnia and Herzegovina (KP216411) [37]. Babesia gibsoni (PP462099) was confirmed in three dogs, and sequences were identical to parasites described in dogs from Italy (MT752610) [38], the USA (DQ184507), Saint Kitts and Nevis (JX112784) [39], India (MN134517), Sri Lanka (OQ396762), China (CP141527), Taiwan (FJ769386), Japan (LC012808), and Myanmar (LC602469). An identical haplotype was reported from a male Boxer in Austria with travel history to Serbia, showing a co-infection with B. canis and B. gibsoni [40].

Four different haplotypes of H. canis (PQ836159–PQ836162) were observed. In 25 (9%) of the dogs, a haplotype (PQ855756) was found that was identical to dog samples from India (PP859411), Zambia (LC331054), Australia (MG062866) and from Eurasian golden jackals (Canis aureus) in Romania (KX712129; [41]) and Ixodes holocyclus in Australia (MG758124; [42]). Haplotype 2 (PQ836160) could be confirmed in four dogs and was identical to H. canis described in dogs from Cuba (MN393911), Uruguay (OR814220), and Malawi (LC169075; [43]); an Iberian wolf (Canis lupus signatus; PP574309) from Spain; red foxes (V. vulpes) in Austria (KM115969; [31]); Pampas foxes (Lycalopex gymnocercus) in Brazil; C. aureus from Austria (Mitkova et al. 2017); and Haemaphysalis longicornis in China and Japan (MT107096, LC169075; [44]). The third haplotype (PQ836161) was observed in two animals and was identical to pathogens in dogs in the Czech Republic (KU893127; [45]); red fox samples from Austria (KM115984, [31]) and the Czech Republic (ON128264); and raccoon (Procyon lotor) in the Czech Republic (OQ816791; [35]). A single sample (PQ836162) varied in one bp from the most abundant haplotype (PQ836159).

Three haplotypes of D. repens were documented in this study (PP552045–PP552047). Haplotype 1 (PP552045) was with one bp difference identical to findings in dogs in Italy (MT345575) [46], Slovenia (OP494254) [47], Austria (MW590257) [48], the Czech Republic (MW675691) [49], and Finland (KY828979); humans in the Czech Republic (KR998257, MW017212) [50], Slovenia (OP494269) [47], Croatia (KX265049) [51], and Finland (KY828978) [52]; and Anopheles plumbeus in Austria (MF695085) [53]. Haplotype 2 was identical to findings in dogs in Italy (KX265048) [51]; a human in Croatia (MT847642) [54]; and An. daciae in Germany (KF692102) [55]. The third haplotype was identical to findings in a dog in the Czech Republic (MW675692) [49] and humans in Italy (KT899073) [56] and Spain (MH780816) [57].

Only one haplotype (PP552044) of D. immitis with global distribution was documented in this study. It was identical to isolates collected in dogs from Slovenia (OP494255) [47], Hungary (KM452920) [58], Italy (AM749229, FN391553) [59], Iran (KR870344, MZ266350) [60], Bangladesh (KC107805) [61], Myanmar (ON259772) [62], Thailand (MT027229) [63], China (EU159111) [64], and Chile (OP811228) [65]. Moreover, the partial mt COI sequence was identical to D. immitis examined in grey wolf in Italy (DQ358815) [66]; golden jackal (Canis aureus) in Iran (MZ266360) [67]; coyote (Canis latrans) in the USA (ON062409) [68]; Culex pipiens s.l. in Spain (LC107816) [69] and Hungary (KM452924) [58]; Cx. quinquefasciatus in Myanmar (OL721654) [70]; domestic cat in the USA (OQ359099) [71]; and humans in Iran (MH920260) and Thailand (MW577348) [72].

Mycoplasma haemocanis (PQ846586) isolates were identical to samples collected in dogs in Bosnia and Herzegovina (MK107818, MK107817, MK107816), Turkey (KX641903), and also Asia and South America. Moreover, the same haplotype was documented in a red fox in Slovakia (KX752055) and cats in Brazil (KM275246, KM275242). Two haplotypes of Candidatus Mycoplasma haematoparvum (PQ846588, PQ846589) were documented. The haplotype (PQ846588) was identical to samples collected in dogs from Bosnia and Herzegovina (MK107815, MK107814), Italy (MH094850), Switzerland (EF416569), Romania (KY433884), and also Cuba (MZ221181), Iran (KU886262, KC762746), Iraq (PP903626), and Thailand (KT359592). Moreover, this haplotype was documented in a human with extensive animal contact (KF366443; [73]). In addition, a single sample (PQ846589) differed in one bp.

Discussion

This study comprehensively reports, to the best of our knowledge, the first PCR-based screening and detection of vector-borne pathogens in dogs from Kosovo. Altogether, the DNA of eight pathogens of five genera was successfully amplified and sequenced. The observed overall prevalence of 54.3% highlights the circulation of various vector-borne pathogens in dogs in all districts of the country.

Of all evaluated factors, we found significantly higher infection rates in purebred dogs compared with mixed-breed dogs. Generally, genetic disorders or cancer predispositions can cluster in inbred dog populations [74, 75]. For infectious diseases, breed predispositions to disease are controversially discussed, for some infectious agents, e.g., Leishmania infantum, significantly higher seroprevalence rates have been found in breeds such as the Doberman Pinscher or Boxer breeds [76], while Ibizan hounds have been observed to be more resistant to Leishmania infections [77]. Particularly, the tick-borne pathogens A. phagocytophilum and Babesia spp. were only found in purebred dogs in our study. In contrast, Facile et al. [78] detected significantly higher infection rates and double infections of tick-borne pathogens in mixed-breed dogs than in purebreds.

In addition, all age classes above 4 years compared with 0–2 years of age showed significantly higher infection rates, being highest in the age class of 6–8 years with a prevalence of 73.9%. This is in line with other studies, particularly in endemic regions, where age correlates with the time of exposure to vectors during a dog’s life [79, 80].

We also observed higher but not significant prevalence rates in males (58%) compared with females (50.7%), which is in line with literature. Several studies on tick-borne pathogens have reported that sex is not a risk factor or a slight predisposition in male dogs, possibly related to their behavior, which exposes them to ticks more frequently [8183].

We report the first detection of A. phagocytophilum by PCR in a dog from Kosovo. Only one dog originating from Gjakova was positive, resulting in a low overall prevalence of 0.4%, which is similar to a study from neighboring Albania reporting a prevalence among dogs of 1% [84]. While prevalences based on PCR and serology are generally not comparable, we would like to highlight that Sinani et al. [13] reported an A. phagocytophilum seroprevalence of 25% in dogs from Kosovo, which is comparable to other Balkan countries such as Croatia (4.5%) [85], Bosnia and Herzegovina (20.7%) [86], and Serbia (28.8%) [87] and confirms circulation. Discrepancies between serological and polymerase chain reaction (PCR) results are commonly reported [84, 86], as PCR is generally the most sensitive diagnostic method, but often only detects recent infections. While antibody tests can still detect past exposure through the presence of antibodies, PCR may become negative over time [88].

Two Babesia species were detected, namely B. vulpes and B. gibsoni, which need further discussion. To date, only one study indicated the circulation of Babesia in dogs from Kosovo, namely B. canis, the main Babesia species infecting dogs [89]. Babesia vulpes, formerly known as Theileria annae, primarily infects red foxes (V. vulpes), which most certainly represent the reservoirs, as high asymptomatic infection rates are observed regularly [90]. On the contrary, sporadic infections have been reported from dogs, and the vector involved is yet unclear; different Ixodes species, as well as R. sanguineus sensu lato, have been suspected [9193]. Babesia gibsoni is a parasite of dogs, and the principal vector is R. sanguineus sensu lato [94]. In dogs, prevalence rates of both species are regularly low, but both small Babesia species are known to cause acute and chronic clinical manifestations in dogs, such as fever, lethargy, anorexia, mild-to-severe thrombocytopenia, and mild-to-severe regenerative anemia due to hemolysis, among others [95]. Noteworthy, we detected a significantly higher infection rate in dogs with disrupted health status compared with healthy dogs. In addition to our data, B. vulpes and B. gibsoni have been molecularly detected in dogs from Croatia and Serbia [95], highlighting the co-circulation of both species in Balkan countries. Thus, species identification should be applied with diagnosis in dogs and detection in ticks to evaluate potential vector species.

The detection of Dirofilaria DNA in dogs from all seven districts of Kosovo underlines the wide spreading of the pathogen in this region. To date, only D. immitis seroprevalences have been reported from dogs from Kosovo. However, D. repens has been reported in other Balkan countries such as Croatia, Bosnia and Herzegovina, and Serbia [96, 97]. Dirofilariosis is a disease of great veterinary importance with high zoonotic potential. Dirofilaria repens infections often develop asymptomatically, but nonspecific dermal alterations have been reported, such as skin nodules, pruritus, thinning, itching, and asthenia [96]. On the contrary, D. immitis is usually located in the heart of carnivores and causes heartworm disease (HWD) [98]. In humans, Dirofilaria generally does not complete its life cycle. However, few cases reported the detection of adult D. repens-producing microfilariae [54]. Usually, D. repens causes subcutaneous nodules or ocular manifestations, whereas D. immitis can cause pulmonary nodules [98]. Several mosquito species of different genera (Aedes, Anopheles, and Culex) have been implicated in the transmission of both Dirofilaria species [99]. In Kosovo, potential vector species, such as Aedes vexans, Anopheles maculipennis s.l., or Culiseta annulata, can be found. Particularly, A. maculipennis s.l. is highly abundant in all seven districts of Kosovo. The recent detection of Aedes albopictus, another potent vector, in Kosovo, might be involved in future transmission cycles if it spreads [14, 15]. Considering the frequent export of dogs from Kosovo to other (Central) European countries, the spread of dirofilariosis to previously nonendemic countries is likely and should be monitored by improved screening and preventive measures.

Hepatozoon canis is an apicomplexan protozoan parasite infecting domestic dogs and wild canids worldwide, and the brown dog tick, R. sanguineus sensu lato, serves as a vector. Transmission to the host typically happens by ingestion of ticks containing oocysts of the parasite, but vertical transmission in foxes is suspected [100, 101]. In our study, we found a H. canis infection rate of around 19%, similarly to other surveys reporting PCR-based prevalences in dogs of 17% in Albania [102], of 18.2% in Serbia [103], and of 26% in Hungary [104]. The infection in dogs is often subclinical but can manifest as a severe life-threatening disease with fever, cachexia, lethargy, and anemia [105], with adverse effects resulting from co-infections with other bacteria or hemoparasites [106]. We did not observe a significant difference between infection rates of healthy and disrupted dogs. However, H. canis presence was associated with 22 co-infections (including 2 triple infections) involving Babesia, Dirofilaria, and Mycoplasma, which could result in more severe clinical cases.

Similar infection rates were also detected for the hemotropic bacteria Candidatus Mycoplasma haematoparvum (19.9%) and Mycoplasma haemocanis (17.8%). Those hemotropic mycoplasmas, or hemoplasmas, are commonly known to cause chronic, subclinical infection in immunocompetent dogs but can cause hemolytic anemia in splenectomized dogs. Lower prevalence rates have been reported in Albania (8.8% for M. haemocanis) [84] and Greece (4.2% for Candidatus M. haematoparvum and 5.6% for M. haemocanis) [107]. The natural mode of transmission of canine haemoplasmas is currently unknown; however, R. sanguineus sensu lato ticks have been hypothesized as vectors owing to the usually higher prevalence rates observed in R. sanguineus sensu lato endemic Mediterranean countries [108, 109]. In addition, other hematophagous insects such as fleas (Siphonaptera), sucking lice (Anoplura), or keds (Hippoboscidae) have been assumed to play a role as vectors [110]. Considering the potential involvement of R. sanguineus sensu lato in the transmission of Babesia, Hepatozoon, and hemotropic Mycoplasma, the currently unclear status of this tick species in Kosovo should give rise to further studies assessing their presence in the country.

Noteworthy, the detection of DNA of vector-borne pathogens by PCR is not necessarily associated with symptoms and does not confirm active infections. In addition, we did not detect Bartonella, Rickettsia, or trypanosomatids (including Leishmania), probably owing to different reasons. Bartonella infections in dogs seem rare in Balkan countries and have been minorly addressed. For instance, Hamel et al. [102] did not detect Bartonella DNA in dogs from Albania, and only an infection rate of 0.7% was detected in dogs from the Czech Republic [111]. The circulation of Rickettsia in the Balkans seems to be evident and increasing. However, detection in dogs is underreported. In addition, the bacteria might only be detectable in blood shortly after infection, and, thus, serology or the PCR-based screening of other tissue might be more appropriate [112]. Similarly, the absence of Leishmania DNA in our samples can be explained. An overall canine leishmaniasis seroprevalence of 4.2% was observed among our samples in a previous study by Xhekaj et al. [18], and the endemicity of leishmaniasis is apparent in the country [16]. However, owing to the intracellular nature of the parasites, the circulation in the blood is higher shortly after infection. Generally, lymph nodes, spleens, or skin samples of infected animals should be favored, if available.

Conclusions

For the first time, we have molecularly assessed and proven the infection of dogs with various vector-borne pathogens in the Republic of Kosovo. Our study highlights the circulation of pathogens with high veterinary importance and zoonotic potential and urges for the development of disease control strategies. High numbers of stray and shelter dogs kept outside might promote the local transmission of CVBDs. Particularly, the implementation of routine monitoring of shelter dogs (which are mostly captured stray dogs) by serology combined with PCR-based diagnosis of recent infections could be a tool to monitor and counteract the establishment of new disease transmission hotspots. However, successful countermeasures include effective treatment, if available, which can be costly and might display a limiting factor.

Given the underreported nature of vector-borne diseases in Kosovo, our results should definitely be used to raise awareness among veterinarians and serve as baseline data for further regular studies.

Availability of data and materials

No datasets were generated or analyzed during the current study.

Abbreviations

AL buffer:

Lysis solution buffer

CVBD:

Canine vector-borne disease

CVBP:

Canine vector-borne pathogens

CI:

Confidence intervals

OR:

Odds ratio

PBS:

Phosphate-buffered saline

rpm:

Rounds per minute

PCR:

Polymerase chain reaction

SD:

Standard deviation

s.l.:

Sensu lato

References

  1. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vector-borne diseases of zoonotic concern: part one. Trends Parasitol. 2009;25:157–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pt.2009.01.003.

    Article  PubMed  Google Scholar 

  2. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vector-borne diseases of zoonotic concern: part two. Trends Parasitol. 2009;25:228–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pt.2009.02.005.

    Article  PubMed  Google Scholar 

  3. Day MJ. One health: the importance of companion animal vector-borne diseases. Parasit Vectors. 2011;4:49. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1756-3305-4-49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reddy MV. Human dirofilariasis: an emerging zoonosis. Trop Parasitol. 2013;3:2.

    PubMed  PubMed Central  Google Scholar 

  5. Rochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol. 2020;69:781. https://doiorg.publicaciones.saludcastillayleon.es/10.1099/JMM.0.001206.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maia C, Conceição C, Pereira A, Rocha R, Ortuño M, Muñozid C, et al. The estimated distribution of autochthonous leishmaniasis by Leishmania infantum in Europe in 2005–2020. PLoS Negl Trop Dis. 2023;17:e0011497. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/JOURNAL.PNTD.0011497.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beugnet F, Chalvet-Monfray K. Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp Immunol Microbiol Infect Dis. 2013;36:559–66. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/J.CIMID.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  8. Michael L. Focus on common small animal vector-borne diseases in Central and Southeastern Europe. Acta Vet Brno. 2020;70:147–69. https://doiorg.publicaciones.saludcastillayleon.es/10.2478/ACVE-2020-0011.

    Article  Google Scholar 

  9. Miró G, Wright I, Michael H, Burton W, Hegarty E, Rodón J, et al. Seropositivity of main vector-borne pathogens in dogs across Europe. Parasit Vectors. 2022;15:1–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/S13071-022-05316-5.

    Article  Google Scholar 

  10. Kapo N, Zuber Bogdanović I, Gagović E, Žekić M, Veinović G, Sukara R, et al. Ixodid ticks and zoonotic tick-borne pathogens of the Western Balkans. Parasit Vectors. 2024;17:45. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-023-06116-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sherifi K, Rexhepi A, Berxholi K, Mehmedi B, Gecaj RM, Hoxha Z, et al. Crimean-Congo hemorrhagic fever virus and Borrelia burgdorferi sensu lato in ticks from Kosovo and Albania. Front Vet Sci. 2018;5:38. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fvets.2018.00038.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoxha I, Xhekaj B, Halimi G, Wijnveld M, Ruivo M, Çaushi D, et al. Zoonotic tick-borne pathogens in Ixodes ricinus complex (Acari: Ixodidae) from urban and peri-urban areas of Kosovo. Zoonoses Pub Health. 2025;72:174–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/zph.13197.

    Article  CAS  Google Scholar 

  13. Sinani A, Aliu H, Latifi F, Haziri I, Xhekaj B, Kampen H, et al. First serological evidence of infections with selected vector-borne pathogens in dogs in Kosovo. Parasitol Res. 2020;119:3863–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-020-06894-y.

    Article  PubMed  Google Scholar 

  14. Muja-Bajraktari N, Zhushi-Etemi F, Dikolli-Velo E, Kadriaj P, Gunay F. The composition, diversity, and distribution of mosquito fauna (Diptera: Culicidae) in Kosovo. J Vector Ecol. 2019;44:94–104. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/jvec.12333.

    Article  PubMed  Google Scholar 

  15. Muja-Bajraktari N, Kadriaj P, Zhushi-Etemi F, Sherifi K, Alten B, Petric D, et al. The Asian tiger mosquito Aedes albopictus (Skuse) in Kosovo: first record. PLoS ONE. 2022;17:e0264300. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/JOURNAL.PONE.0264300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xhekaj B, Hoxha I, Platzgummer K, Kniha E, Walochnik J, Sherifi K, et al. First Detection and molecular analysis of Leishmania infantum DNA in sand flies of Kosovo. Pathogens. 2023;12:1190. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pathogens12101190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xhekaj B, Alishani M, Rexhepi A, Jakupi X, Sherifi K. Serological survey of canine leishmaniasis in southwestern region of Kosovo. Vet Ital. 2020;56:47–50. https://doiorg.publicaciones.saludcastillayleon.es/10.12834/VetIt.1345.7407.5.

    Article  Google Scholar 

  18. Xhekaj B, Stefanovska J, Sherifi K, Rexhepi A, Bizhga B, Rashikj L, et al. Seroprevalence of canine leishmaniosis in asymptomatic dogs in Kosovo. Parasitol Res. 2023;122:607–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-022-07762-7.

    Article  PubMed  Google Scholar 

  19. Team Rs. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. 2020. http://www.rstudio.com/.

  20. QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. http://qgis.osgeo.org.

  21. Seo M-G, Kwon O-D, Kwak D. Molecular detection and phylogenetic analysis of canine tick-borne pathogens from Korea. Ticks Tick Borne Dis. 2020;11:101357. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ttbdis.2019.101357.

    Article  PubMed  Google Scholar 

  22. Hodžić A, Georges I, Postl M, Duscher GG, Jeschke D, Szentiks CA, et al. Molecular survey of tick-borne pathogens reveals a high prevalence and low genetic variability of Hepatozoon canis in free-ranging grey wolves (Canis lupus) in Germany. Ticks Tick Borne Dis. 2020;11:101389. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ttbdis.2020.101389.

    Article  PubMed  Google Scholar 

  23. Radyuk E, Karan L. A case of Babesia vulpes infection in a dog in Russia. Vet Parasitol Reg Stud Rep. 2020;22:100467. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vprsr.2020.100467.

    Article  Google Scholar 

  24. Altay K, Erol U, Sahin OF, Aydin MF, Aytmirzakizi A, Dumanli N. First molecular evidence of Babesia vogeli, Babesia vulpes, and Theileria ovis in dogs from Kyrgyzstan. Pathogens. 2023;12:1046. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pathogens12081046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zahler M, Rinder H, Schein E, Gothe R. Detection of a new pathogenic Babesia microti-like species in dogs. Vet Parasitol. 2000;89:241–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0304-4017(00)00202-8.

    Article  CAS  PubMed  Google Scholar 

  26. Camacho AT, Guitian FJ, Pallas E, Gestal JJ, Olmeda AS, Goethert HK, et al. Azotemia and mortality among Babesia microti-like infected dogs. J Vet Intern Med. 2004;18:141–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1939-1676.2004.tb00152.x.

    Article  PubMed  Google Scholar 

  27. René-Martellet M, Moro CV, Chêne J, Bourdoiseau G, Chabanne L, Mavingui P. Update on epidemiology of canine babesiosis in Southern France. BMC Vet Res. 2015;11:223. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12917-015-0525-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeagley TJ, Reichard MV, Hempstead JE, Allen KE, Parsons LM, White MA, et al. Detection of Babesia gibsoni and the canine small Babesia ‘Spanish isolate’ in blood samples obtained from dogs confiscated from dogfighting operations. J Am Vet Med Assoc. 2009;235:535–9. https://doiorg.publicaciones.saludcastillayleon.es/10.2460/javma.235.5.535.

    Article  PubMed  Google Scholar 

  29. Hodžić A, Zörer J, Duscher GG. Dermacentor reticulatus, a putative vector of Babesia cf. microti (syn. Theileria annae) piroplasm. Parasitol Res. 2017;116:1075–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-017-5379-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duscher T, Hodžić A, Glawischnig W, Duscher GG. The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)—Their role and impact of maintaining and transmitting zoonotic diseases in Austria Central Europe. Parasitol Res. 2017;116:1411–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-017-5405-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Duscher GG, Fuehrer H-P, Kübber-Heiss A. Fox on the run – Molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasit Vectors. 2014;7:521. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-014-0521-7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hodžić A, Mrowietz N, Cézanne R, Bruckschwaiger P, Punz S, Habler VE, et al. Occurrence and diversity of arthropod-transmitted pathogens in red foxes (Vulpes vulpes) in Western Austria, and possible vertical (transplacental) transmission of Hepatozoon canis. Parasitology. 2018;145:335–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1017/S0031182017001536.

    Article  PubMed  Google Scholar 

  33. Orkun Ö, Karaer Z. Molecular characterization of Babesia species in wild animals and their ticks in Turkey. Infect Genet Evol. 2017;55:8–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/J.MEEGID.2017.08.026.

    Article  CAS  PubMed  Google Scholar 

  34. Bartley PM, Hamilton C, Wilson C, Innes EA, Katzer F. Detection of Babesia annae DNA in lung exudate samples from Red foxes (Vulpes vulpes) in Great Britain. Parasit Vectors. 2016;9:84. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-016-1364-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daněk O, Lesiczka PM, Hammerbauerova I, Volfova K, Juránková J, Frgelecová L, et al. Role of invasive carnivores (Procyon lotor and Nyctereutes procyonoides) in epidemiology of vector-borne pathogens: molecular survey from the Czech Republic. Parasit Vectors. 2023;16:219. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-023-05834-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dežđek D, Vojta L, Ćurković S, Lipej Z, Mihaljević Ž, Cvetnić Ž, et al. Molecular detection of Theileria annae and Hepatozoon canis in foxes (Vulpes vulpes) in Croatia. Vet Parasitol. 2010;172:333–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2010.05.022.

    Article  PubMed  Google Scholar 

  37. Hodžić A, Alić A, Fuehrer H-P, Harl J, Wille-Piazzai W, Duscher G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit Vectors. 2015;8:88. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-015-0692-x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carli E, De Arcangeli S, Montelli S, Caldin M, Ligorio E, Furlanello T. Babesia gibsoni infection in Italy: a cross sectional study of 607 blood samples belonging to dogs that needed a molecular analysis investigation (2016–2019). Vet Parasitol Reg Stud Rep. 2021;25:100596. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vprsr.2021.100596.

    Article  Google Scholar 

  39. Loftis AD, Kelly PJ, Freeman MD, Fitzharris S, Beeler-Marfisi J, Wang C. Tick-borne pathogens and disease in dogs on St. Kitts West Indies. Vet Parasitol. 2013;196:44–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/J.VETPAR.2013.01.024.

    Article  PubMed  Google Scholar 

  40. Strobl A, Pantchev N, Martin L, Guija-De-Arespacochaga A, Hinney B, Fuehrer H-P, et al. Co-infection with Babesia canis and Babesia gibsoni in a dog. Acta Vet Hung. 2021;69:347–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1556/004.2021.00048.

    Article  Google Scholar 

  41. Mitková B, Hrazdilová K, D’Amico G, Duscher GG, Suchentrunk F, Forejtek P, et al. Eurasian golden jackal as host of canine vector-borne protists. Parasit Vectors. 2017;10:183. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-017-2110-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Greay TL, Zahedi A, Krige A-S, Owens JM, Rees RL, Ryan UM, et al. Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasit Vectors. 2018;11:197. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-018-2775-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chatanga E, Kainga H, Razemba T, Ssuna R, Swennen L, Hayashida K, et al. Molecular detection and characterization of tick-borne hemoparasites and Anaplasmataceae in dogs in major cities of Malawi. Parasitol Res. 2021;120:267–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-020-06967-y.

    Article  PubMed  Google Scholar 

  44. Guo W-P, Xie G-C, Xue Z-Q, Yu J-J, Jian R, Du L-Y, et al. Molecular detection of Hepatozoon canis in dogs and ticks in Shaanxi Province China. Comp Immunol Microbiol Infect Dis. 2020;72:101514. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cimid.2020.101514.

    Article  PubMed  Google Scholar 

  45. Mitková B, Hrazdilová K, Steinbauer V, D’Amico G, Mihalca AD, Modrý D. Autochthonous Hepatozoon infection in hunting dogs and foxes from the Czech Republic. Parasitol Res. 2016;115:4167–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-016-5191-2.

    Article  PubMed  Google Scholar 

  46. Barlozzari G, Felice T, Salvato L, Conti R, De Liberato C, Furzi F, et al. Usual or unusual presentations of Dirofilaria repens in two sibling dogs: a case report. Parasitol Res. 2021;120:109–15. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-020-06926-7.

    Article  PubMed  Google Scholar 

  47. Kotnik T, Rataj AV, Šoba B. Dirofilaria repens in dogs and humans in Slovenia. J Vet Res. 2022;66:117–23. https://doiorg.publicaciones.saludcastillayleon.es/10.2478/jvetres-2022-0008.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sonnberger BW, Graf B, Straubinger RK, Rackl D, Obwaller AG, Peschke R, et al. Vector-borne pathogens in clinically healthy military working dogs in Eastern Austria. Parasitol Int. 2021;84:102410. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.parint.2021.102410.

    Article  CAS  PubMed  Google Scholar 

  49. Juránková J, Šenkyříková Mitková B, Novotná M, Hofmannová L, Červená B, Bowman DD, et al. Further data on the distribution of Dirofilaria spp. in the Czech Republic in dogs. Folia Parasitol. 2022;69:2022.007. https://doiorg.publicaciones.saludcastillayleon.es/10.14411/fp.2022.007.

    Article  CAS  Google Scholar 

  50. Matějů J, Chanová M, Modrý D, Mitková B, Hrazdilová K, Žampachová V, et al. Dirofilaria repens: emergence of autochthonous human infections in the Czech Republic (case reports). BMC Infect Dis. 2016;16:171. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12879-016-1505-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yilmaz E, Fritzenwanker M, Pantchev N, Lendner M, Wongkamchai S, Otranto D, et al. The mitochondrial genomes of the zoonotic canine filarial parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) honkongensis provide evidence for presence of cryptic species. PLoS Negl Trop Dis. 2016;10:e0005028. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pntd.0005028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pietikäinen R, Nordling S, Jokiranta S, Saari S, Heikkinen P, Gardiner C, et al. Dirofilaria repens transmission in Southeastern Finland. Parasit Vectors. 2017;10:561. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-017-2499-4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Übleis SS, Cuk C, Nawratil M, Butter J, Schoener E, Obwaller AG, et al. Xenomonitoring of mosquitoes (Diptera: Culicidae) for the presence of filarioid helminths in Eastern Austria. Can J Infect Dis Med Microbiol. 2018;2018:1–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2018/9754695.

    Article  Google Scholar 

  54. Pupić-Bakrač A, Pupić-Bakrač J, Beck A, Jurković D, Polkinghorne A, Beck R. Dirofilaria repens microfilaremia in humans: case description and literature review. One Heal. 2021;13:100306. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.onehlt.2021.100306.

    Article  Google Scholar 

  55. Kronefeld M, Kampen H, Sassnau R, Werner D. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors. 2014;7:30. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1756-3305-7-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fontanelli Sulekova L, Gabrielli S, De Angelis M, Milardi GL, Magnani C, Di Marco B, et al. Dirofilaria repens microfilariae from a human node fine-needle aspirate: a case report. BMC Infect Dis. 2016;16:248. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12879-016-1582-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laynez-Roldán P, Martínez-de la Puente J, Montalvo T, Mas J, Muñoz J, Figuerola J, et al. Two cases of subcutaneous dirofilariasis in Barcelona Spain. Parasitol Res. 2018;117:3679–81. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-018-6098-x.

    Article  PubMed  Google Scholar 

  58. Zittra C, Kocziha Z, Pinnyei S, Harl J, Kieser K, Laciny A, et al. Screening blood-fed mosquitoes for the diagnosis of filarioid helminths and avian malaria. Parasit Vectors. 2015;8:16. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-015-0637-4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferri E, Barbuto M, Bain O, Galimberti A, Uni S, Guerrero R, et al. Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Front Zool. 2009;6:1. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1742-9994-6-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bamorovat M, Sharifi I, Fasihi Harandi M, Nasibi S, Sadeghi B, Khedri J, et al. Parasitological, serological and molecular study of Dirofilaria immitis in domestic dogs Southeastern Iran. Iran J Parasitol. 2017;12:260–6.

    PubMed  PubMed Central  Google Scholar 

  61. Fuehrer H-P, Treiber M, Silbermayr K, Baumann TA, Swoboda P, Joachim A, et al. Indigenous Dirofilaria immitis in Bangladesh. Parasitol Res. 2013;112:2393–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-013-3311-9.

    Article  PubMed  Google Scholar 

  62. Bawm S, Khaing Y, Chel HM, Hmoon MM, Win SY, Bo M, et al. Molecular detection of Dirofilaria immitis and its Wolbachia endosymbionts in dogs from Myanmar. Curr Res Parasitol Vector-Borne Dis. 2023;4:100148. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.crpvbd.2023.100148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Colella V, Nguyen VL, Tan DY, Lu N, Fang F, Zhijuan Y, et al. Zoonotic vectorborne pathogens and ectoparasites of dogs and cats in Eastern and Southeast Asia. Emerg Infect Dis. 2020;26:1221–33. https://doiorg.publicaciones.saludcastillayleon.es/10.3201/eid2606.191832.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang H, Wang T, Yang G, Zhang Z, Wang C, Yang Z, et al. Molecular characterization and phylogenetic analysis of Dirofilaria immitis of China based on COI and 12S rDNA genes. Vet Parasitol. 2009;160:175–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2008.10.053.

    Article  CAS  PubMed  Google Scholar 

  65. Alvarez Rojas CA, Cancino-Faure B, Lillo P, Fernández ML, González AP, Ramírez AF. Dirofilaria immitis in dog imported from Venezuela to Chile. Emerg Infect Dis. 2023;29:439. https://doiorg.publicaciones.saludcastillayleon.es/10.3201/eid2902.221427.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pascucci I, Fico R, Rita A, Angelo D. First notification in Italy of cardiopulmonary filariosis. Vet Ital. 2007;43:851–8.

    Google Scholar 

  67. Sharifdini M, Karimi M, Ashrafi K, Soleimani M, Mirjalali H. Prevalence and molecular characterization of Dirofilaria immitis in road killed canids of Northern Iran. BMC Vet Res. 2022;18:161. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12917-022-03270-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sobotyk C, Nguyen N, Negrón V, Varner A, Saleh MN, Hilton C, et al. Detection of Dirofilaria immitis via integrated serological and molecular analyses in coyotes from Texas, United States. Int J Parasitol Parasites Wildl. 2022;18:20–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijppaw.2022.03.012.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bravo-Barriga D, Parreira R, Almeida APG, Calado M, Blanco-Ciudad J, Serrano-Aguilera FJ, et al. Culex pipiens as a potential vector for transmission of Dirofilaria immitis and other unclassified Filarioidea in Southwest Spain. Vet Parasitol. 2016;223:173–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2016.04.030.

    Article  CAS  PubMed  Google Scholar 

  70. Aung ST, Bawm S, Chel HM, Htun LL, Wai SS, Eshita Y, et al. The first molecular confirmation of Culex pipiens complex as potential natural vectors of Dirofilaria immitis in Myanmar. Med Vet Entomol. 2023;37:542–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/mve.12652.

    Article  CAS  PubMed  Google Scholar 

  71. Mosley IA, Zecca IB, Tyagi N, Harvey TV, Hamer SA, Verocai GG. Occurrence of Dirofilaria immitis infection in shelter cats in the lower Rio Grande Valley region in South Texas, United States, using integrated diagnostic approaches. Vet Parasitol Reg Stud Rep. 2023;41:100871. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vprsr.2023.100871.

    Article  Google Scholar 

  72. Somsap Y, Boonroumkaew P, Somsap A, Rodpai R, Sadaow L, Sanpool O, et al. Ocular dirofilariasis case in Thailand confirmed by molecular analysis to be caused by Dirofilaria immitis. Am J Trop Med Hyg. 2022;106:204. https://doiorg.publicaciones.saludcastillayleon.es/10.4269/AJTMH.21-0764.

    Article  CAS  Google Scholar 

  73. Maggi RG, Compton SM, Trull CL, Mascarelli PE, Mozayeni BR, Breitschwerdt EB. Infection with hemotropic Mycoplasma species in patients with or without extensive arthropod or animal contact. J Clin Microbiol. 2013;51:3237–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/JCM.01125-13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oberbauer AM, Belanger JM, Bellumori T, Bannasch DL, Famula TR. Ten inherited disorders in purebred dogs by functional breed groupings. Canine Genet Epidemiol. 2015;2:9. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40575-015-0021-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dobson JM. Breed-predispositions to cancer in pedigree dogs. ISRN Vet Sci. 2013;2013:1–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2013/941275.

    Article  CAS  Google Scholar 

  76. Edo M, Marín-García PJ, Llobat L. Is the prevalence of Leishmania infantum linked to breeds in dogs? Characterization of seropositive dogs in Ibiza. Animals. 2021;11:2579. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani11092579.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Solano-Gallego L, Llull J, Ramos G, Riera C, Arboix M, Alberola J, et al. The Ibizian hound presents a predominantly cellular immune response against natural Leishmania infection. Vet Parasitol. 2000;90:37–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0304-4017(00)00223-5.

    Article  CAS  PubMed  Google Scholar 

  78. Facile V, Sabetti MC, Balboni A, Urbani L, Tirolo A, Magliocca M, et al. Detection of Anaplasma spp. and Ehrlichia spp. in dogs from a veterinary teaching hospital in Italy: a retrospective study 2012–2020. Vet Res Commun. 2024;48:1727–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11259-024-10358-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ebani VV, Bertelloni F, Turchi B, Cerri D. Serological and molecular survey of Anaplasma phagocytophilum in Italian hunting dogs. Ann Agric Environ Med. 2013;20:289–92.

    PubMed  Google Scholar 

  80. Dzięgiel B, Adaszek Ł, Carbonero A, Łyp P, Winiarczyk M, Dębiak P, et al. Detection of canine vector-borne diseases in Eastern Poland by ELISA and PCR. Parasitol Res. 2016;115:1039–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-015-4832-1.

    Article  PubMed  Google Scholar 

  81. Sainz Á, Roura X, Miró G, Estrada-Peña A, Kohn B, Harrus S, et al. Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasit Vectors. 2015;8:75. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-015-0649-0.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ebani VV. Serological survey of Ehrlichia canis and Anaplasma phagocytophilum in dogs from Central Italy: an update (2013–2017). Pathogens. 2019;8:3. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/pathogens8010003.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hazelrig CM, Gettings JR, Cleveland CA, Varela-Stokes A, Majewska AA, Hubbard K, et al. Spatial and risk factor analyses of vector-borne pathogens among shelter dogs in the Eastern United States. Parasit Vectors. 2023;16:197. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-023-05813-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hamel D, Shukullari E, Rapti D, Silaghi C, Pfister K, Rehbein S. Parasites and vector-borne pathogens in client-owned dogs in Albania. Blood pathogens and seroprevalences of parasitic and other infectious agents. Parasitol Res. 2016;115:489–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-015-4765-8.

    Article  PubMed  Google Scholar 

  85. Jurković D, Beck A, Huber D, Mihaljević Ž, Polkinghorne A, Martinković F, et al. Seroprevalence of vector-borne pathogens in dogs from Croatia. Parasitol Res. 2019;118:347–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00436-018-6129-7.

    Article  PubMed  Google Scholar 

  86. Maksimović Z, Dervišević M, Zahirović A, Rifatbegović M. Seroprevalence of Anaplasma spp. and Ehrlichia spp. and molecular detection of Anaplasma phagocytophilum and Anaplasma platys in stray dogs in Bosnia and Herzegovina. Ticks Tick Borne Dis. 2022;13:101875. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ttbdis.2021.101875.

    Article  PubMed  Google Scholar 

  87. Kovačević Filipović MM, Beletić AD, Ilić Božović AV, Milanović Z, Tyrrell P, Buch J, et al. Molecular and serological prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among clinically healthy outdoor dogs in Serbia. Vet Parasitol Reg Stud Rep. 2018;14:117–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vprsr.2018.10.001.

    Article  Google Scholar 

  88. Schäfer I, Kohn B, Silaghi C, Fischer S, Marsboom C, Hendrickx G, et al. Molecular and serological detection of Anaplasma phagocytophilum in dogs from Germany (2008–2020). Animals. 2023;13:720. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani13040720.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lazri T, Duscher G, Edelhofer R, Bytyci B, Gjino P, Joachim A. Arthropod-borne parasites of dogs, especially Leishmania, in the Kosovo and Albania. Wien Klin Wochenschr. 2008;120:54–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00508-008-1076-4.

    Article  PubMed  Google Scholar 

  90. Baneth G, Florin-Christensen M, Cardoso L, Schnittger L. Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit Vectors. 2015;8:207. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-015-0830-5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Iori A, Gabrielli S, Calderini P, Moretti A, Pietrobelli M, Tampieri MP, et al. Tick reservoirs for piroplasms in Central and Northern Italy. Vet Parasitol. 2010;170:291–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2010.02.027.

    Article  PubMed  Google Scholar 

  92. Lledó L, Giménez-Pardo C, Domínguez-Peñafiel G, Sousa R, Gegúndez MI, Casado N, et al. Molecular detection of hemoprotozoa and Rickettsia species in arthropods collected from wild animals in the Burgos Province Spain. Vector-Borne Zoonotic Dis. 2010;10:735–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/vbz.2009.0114.

    Article  PubMed  Google Scholar 

  93. Najm N-A, Meyer-Kayser E, Hoffmann L, Herb I, Fensterer V, Pfister K, et al. A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia Germany. Ticks Tick Borne Dis. 2014;5:386–91. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ttbdis.2014.01.005.

    Article  PubMed  Google Scholar 

  94. Teodorowski O, Kalinowski M, Winiarczyk D, Dokuzeylül B, Winiarczyk S, Adaszek Ł. Babesia gibsoni Infection in dogs—A European perspective. Animals. 2022;12:730. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani12060730.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Solano-Gallego L, Sainz Á, Roura X, Estrada-Peña A, Miró G. A review of canine babesiosis: the European perspective. Parasit Vectors. 2016;9:336. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-016-1596-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Capelli G, Genchi C, Baneth G, Bourdeau P, Brianti E, Cardoso L, et al. Recent advances on Dirofilaria repens in dogs and humans in Europe. Parasit Vectors. 2018;11:663. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/S13071-018-3205-X.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tasić-Otašević S, Savić S, Jurhar-Pavlova M, Stefanovska J, Stalević M, Ignjatović A, et al. Molecular survey of Dirofilaria and Leishmania species in dogs from Central Balkan. Animals. 2022;12:911. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ani12070911.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Méndez JC, Carretón E, Martínez S, Tvarijonaviciute A, Cerón JJ, Montoya-Alonso JA. Acute phase response in dogs with Dirofilaria immitis. Vet Parasitol. 2014;204:420–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/J.VETPAR.2014.05.016.

    Article  PubMed  Google Scholar 

  99. Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, et al. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev. 2012;25:507–44. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/CMR.00012-12.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Baneth G, Samish M, Shkap V. Life cycle of Hepatozoon canis (Apicomplexa: Adeleorina: Hepatozoidae) in the tick Rhipicephalus sanguineus and domestic dog (Canis familiaris). J Parasitol. 2007;93:283–99. https://doiorg.publicaciones.saludcastillayleon.es/10.1645/GE-494R.1.

    Article  PubMed  Google Scholar 

  101. Baneth G. Perspectives on canine and feline hepatozoonosis. Vet Parasitol. 2011;181:3–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2011.04.015.

    Article  PubMed  Google Scholar 

  102. Hamel D, Silaghi C, Knaus M, Visser M, Kusi I, Rapti D, et al. Detection of Babesia canis subspecies and other arthropod-borne diseases in dogs from Tirana, Albania. Wien Klin Wochenschr. 2009;121:42–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00508-009-1234-3.

    Article  PubMed  Google Scholar 

  103. Sukara R, Andrić N, Andrić JF, Mihaljica D, Veinović G, Ranković V, et al. Autochthonous infection with Ehrlichia canis and Hepatozoon canis in dogs from Serbia. Vet Med Sci. 2023;9:111–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/vms3.1061.

    Article  CAS  PubMed  Google Scholar 

  104. Hornok S, Tánczos B, Fernández de Mera IG, de la Fuente J, Hofmann-Lehmann R, Farkas R. High prevalence of Hepatozoon-infection among shepherd dogs in a region considered to be free of Rhipicephalus sanguineus. Vet Parasitol. 2013;196:189–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  105. Baneth G, Weigler B. Retrospective case-control study of hepatozoonosis in dogs in Israel. J Vet Intern Med. 1997;11:365–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1939-1676.1997.tb00482.x.

    Article  CAS  PubMed  Google Scholar 

  106. Uiterwijk M, Vojta L, Šprem N, Beck A, Jurković D, Kik M, et al. Diversity of Hepatozoon species in wild mammals and ticks in Europe. Parasit Vectors. 2023;16:27. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-022-05626-8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tennant KV, Barker EN, Polizopoulou Z, Helps CR, Tasker S. Real-time quantitative polymerase chain reaction detection of haemoplasmas in healthy and unhealthy dogs from Central Macedonia Greece. J Small Anim Pract. 2011;52:645–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1748-5827.2011.01126.x.

    Article  CAS  PubMed  Google Scholar 

  108. Barker EN, Tasker S, Day MJ, Warman SM, Woolley K, Birtles R, et al. Development and use of real-time PCR to detect and quantify Mycoplasma haemocanis and “Candidatus Mycoplasma haematoparvum” in dogs. Vet Microbiol. 2010;140:167–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetmic.2009.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Novacco M, Meli ML, Gentilini F, Marsilio F, Ceci C, Pennisi MG, et al. Prevalence and geographical distribution of canine hemotropic Mycoplasma infections in Mediterranean countries and analysis of risk factors for infection. Vet Microbiol. 2010;142:276–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetmic.2009.09.069.

    Article  PubMed  Google Scholar 

  110. Beus K, Goudarztalejerdi A, Sazmand A. Molecular detection and identification of hemotropic Mycoplasma species in dogs and their ectoparasites in Iran. Sci Rep. 2024;14:580. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-024-51173-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Konvalinová J, Svobodová V, Molinková D, Svoboda M. PCR detection of Bartonella spp. in the dog. Acta Vet Brno. 2014;83:79–82. https://doiorg.publicaciones.saludcastillayleon.es/10.2754/avb201483020079.

    Article  Google Scholar 

  112. Abdad MY, Abou Abdallah R, Fournier P-E, Stenos J, Vasoo S. A Concise Review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J Clin Microbiol. 2018. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/JCM.01728-17.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Parola P, Roux V, Camicas JL, Baradji I, Brouqui P, Raoult D. Detection of Ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg. 2000;94:707–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0035-9203(00)90243-8.

    Article  CAS  PubMed  Google Scholar 

  114. Zintl A, Finnerty EJ, Murphy TM, de Waal T, Gray JS. Babesias of red deer (Cervus elaphus) in Ireland. Vet Res. 2011;42:7. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1297-9716-42-7.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A, L’Hostis M, et al. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 2007;134:197–207. https://doiorg.publicaciones.saludcastillayleon.es/10.1017/S0031182006001545.

    Article  CAS  PubMed  Google Scholar 

  116. Hamer GL, Anderson TK, Berry GE, Makohon-Moore AP, Crafton JC, Brawn JD, et al. Prevalence of filarioid nematodes and trypanosomes in American robins and house sparrows, Chicago USA. Int J Parasitol Parasites Wildl. 2013;2:42–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/J.IJPPAW.2012.11.005.

    Article  PubMed  Google Scholar 

  117. Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC. Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: a molecular study. Vet Microbiol. 2003;93:307–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0378-1135(03)00044-0.

    Article  CAS  PubMed  Google Scholar 

  118. Vitorino L, Zé-Zé L, Sousa A, Bacellar F, Tenreiro R. rRNA Intergenic spacer regions for phylogenetic analysis of Rickettsia species. Ann N Y Acad Sci. 2003;990:726–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/J.1749-6632.2003.TB07451.X.

    Article  CAS  PubMed  Google Scholar 

  119. Peña-Espinoza M, Em D, Shahi-Barogh B, Berer D, Duscher GG, van der Vloedt L, et al. Molecular pathogen screening of louse flies (Diptera: Hippoboscidae) from domestic and wild ruminants in Austria. Parasit Vectors. 2023;16:179. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-023-05810-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rishniw M, Barr SC, Simpson KW, Frongillo MF, Franz M, Dominguez Alpizar JL. Discrimination between six species of canine microfilariae by a single polymerase chain reaction. Vet Parasitol. 2006;135:303–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vetpar.2005.10.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all colleagues who helped to collect the blood samples.

Funding

This research was partially funded by the Ministry of Education, Science and Technology of the Republic of Kosovo, project no. 2–1775.

Author information

Authors and Affiliations

Authors

Contributions

B.X.—data curation, formal analysis, methodology, and writing—review and editing. E.K.—formal analysis, methodology, writing—original draft, and writing—review and editing. L.W—methodology, and writing—review and editing. I.H.—methodology and writing—review and editing. B.E.—methodology and writing—review and editing. J.S.—supervision and writing—review and editing. A.C.—supervision and writing—review and editing. K.S.—project administration, supervision, and writing—review and editing. H.P.F.—data curation, formal analysis, methodology, writing—original draft, and writing—review and editing.

Corresponding author

Correspondence to Hans-Peter Fuehrer.

Ethics declarations

Ethics approval and consent to participate

Blood samples were tested as remnants of a previously published study on Leishmania seroprevalence [18], which was conducted in compliance with the regulations of the Department of Hygiene, Welfare, and Ethology of Animals, Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”. Sampling was performed following the approval of the Faculty on 19 March 2021. Scientific research works that include investigation of vector-borne emerging diseases in dogs are performed to diagnose animal diseases and improve animal welfare. No suffering was caused during the sample collection.

Consent for publication

Informed consent was obtained from all owners of dogs involved in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xhekaj, B., Kniha, E., Wiesmüller, L. et al. Vector-borne pathogens in dogs from the Republic of Kosovo. Parasites Vectors 18, 136 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-025-06777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13071-025-06777-0

Keywords